Low-Temperature Photocrystallization of Atomic Layer Deposition-Processed Tin Oxide for Highly Efficient and Flexible Perovskite Solar Cells. [PDF]
Ko D, Joo SH, Kim S, Kim IS, Park M.
europepmc +1 more source
Well‐structured graphene hybrid architectures featuring spatially resolved fluorescent properties represent a promising but so‐far elusive synthetic target. A robust and straightforward method for fabricating well‐organized graphene‐dye hybrid nanoassemblies through a combination of reductive patterning and conventional click chemistry is presented ...
Sabrin Al‐Fogra +12 more
wiley +1 more source
Deposition of uniform films on complex 3D objects by atomic layer deposition for plasma etch-resistant coatings. [PDF]
Han X +7 more
europepmc +1 more source
The disordered growth of dendrites, corrosion, parasitic side reactions, slow de‐solvation kinetics, and inherent safety risks significantly hinder the practical deployment of conventional liquid electrolyte zinc‐ion batteries. In contrast, the novel PU‐EG+DMPA‐Zn polyurethane quasi‐solid‐state electrolyte, enriched with abundant polar functional ...
Ruiqi Liu +10 more
wiley +1 more source
Optimizing the crystallinity of ZrO<sub>2</sub> gate insulator in indium gallium zinc oxide thin-film transistors through atomic layer deposition process temperature control. [PDF]
Jeong H +4 more
europepmc +1 more source
In Situ Study of Resistive Switching in a Nitride‐Based Memristive Device
In situ TEM biasing experiment demonstrates the volatile I‐V characteristic of MIM lamella device. In situ STEM‐EELS Ti L2/L3 ratio maps provide direct evidence of the oxygen vacancies migrations under positive/negative electrical bias, which is critical for revealing the RS mechanism for the MIM lamella device.
Di Zhang +19 more
wiley +1 more source
Retraction of "N<sub>2</sub>/H<sub>2</sub> Plasma-Enhanced Atomic Layer Deposition for SiO<sub>2</sub> Gap Filling: Implications for Nanoelectronics in Semiconductor Manufacturing". [PDF]
Okasha S, Munson D, Yoshikawa J.
europepmc +1 more source
Grain Boundary Space Charge Engineering of Solid Oxide Electrolytes: Model Thin Film Study
This study demonstrates unprecedented control of grain boundary electrical properties in solid electrolytes. Selective diffusion of cations through grain boundaries in thin films enables 12 orders of magnitude variation in ionic resistance, proving that systematic chemical modification of grain boundary electrical properties is feasible.
Thomas Defferriere +5 more
wiley +1 more source
A mineral‐based supra‐nano amorphous ruthenium dioxide composite (a‐Ru0.5‐AM) was designed, achieving 97% broadband solar absorption. Under one sun, it reaches 87.91 ± 0.32 °C with a distinct thermal buffering effect that favors thermal confinement.
Yunchen Long +13 more
wiley +1 more source

