Results 141 to 150 of about 3,340,845 (318)
Multi‐institutional study on image quality for a novel CBCT solution on O‐ring linac
Journal of Applied Clinical Medical Physics, EarlyView.Abstract Introduction
This work presents a multi‐institutional study on image quality provided by a novel cone beam computed tomography (CBCT). The main goal is to investigate the consistency of imaging performance across multiple institutions.Luis Agulles‐Pedrós, R. Lee MacDonald, Amanda Jean Cherpak, Nayha Dixit, Lei Dong, Tianyu Zhao, Kundan Thind, Anthony Doemer, Boon‐Keng Teo, Shiqin Su, Alexander Moncion, James L. Robar +11 morewiley +1 more sourceFeasibility study of skin dosimetry with TLD sheets for measuring the effect of 3D printed bolus in radiotherapy
Journal of Applied Clinical Medical Physics, EarlyView.Abstract
The thermoluminescence dosimeter (TLD) sheet is a measurement device coated with manganese‐doped LiB3O5 in sheet form. The sheet is 0.2‐mm thick and flexible. Hence, it can fit and be installed on irregular surfaces. The current study aimed to evaluate the feasibility of measuring patient surface doses during radiation therapy using TLD sheets.Yuya Miyasaka, Mayumi Ichikawa, Takagi Akira, Yoshifumi Yamazawa, Hongbo Chai, Hikaru Souda, Miyu Ishizawa, Hiraku Sato, Takeo Iwai +8 morewiley +1 more sourceThe switching dynamics of the bacterial flagellar motor
Molecular Systems Biology, 2009 Many bacteria are propelled by flagellar motors that stochastically switch between the clockwise and counterclockwise rotation direction. Although the switching dynamics is one of their most important characteristics, the mechanisms that control it are ...Siebe B van Albada, Sorin Tănase‐Nicola, Pieter Rein ten Wolde +2 moredoaj +1 more sourceProbing exotic phenomena at the interface of nuclear and particle
physics with the electric dipole moments of diamagnetic atoms: A unique
window to hadronic and semi-leptonic CP violation
, 2017 The current status of electric dipole moments of diamagnetic atoms which
involves the synergy between atomic experiments and three different theoretical
areas -- particle, nuclear and atomic is reviewed. Various models of particle
physics that predict CP @@endQCD Collaboration, A. Abdel-Rehim, A. Abdel-Rehim, A. Abdel-Rehim, A. Bacchetta, A. Bartl, A. Courtoy, A. Czarnecki, A. Djouadi, A. Faessler, A. Faessler, A. Maiezza, A. Maiezza, A. Pich, A. Pilaftsis, A. Pilaftsis, A. Pilaftsis, A. Romanino, A. Shindler, A. Yoshimi, A. Yoshimi, A.D. Sakharov, A.J. Buras, A.J. Buras, A.M. Martensson-Pendrill, A.R. Zhitnitsky, A.W. Thomas, ACME Collaboration, ATLAS Collaboration, ATLAS Collaboration, ATLAS Collaboration, ATLAS Collaboration, B. Aubert, B. Borasoy, B. Graner, B. K. Sahoo, B. Li, B. McKellar, B. P. Das, B.C. Regan, B.K. Sahoo, B.K. Sahoo, Belle Collaboration, C. Adolph, C. Alexandrou, C. Alexandrou, C. Dib, C. Hamzaoui, C. Hamzaoui, C. Jarlskog, C. Kao, C.-C. Chiou, C.-P. Liu, C.-Y. Chen, C.-Y. Seng, C.-Y. Seng, C.A. Baker, C.Q. Geng, C.S. Lim, CMS Collaboration, CMS Collaboration, CMS Collaboration, CMS Collaboration, CMS Collaboration, CMS Collaboration, CMS Collaboration, CMS Collaboration, D. Bowser-Chao, D. Chang, D. Chang, D. Chang, D. Chang, D. Chang, D. Chang, D. Chang, D. Cho, D. Cho, D. Demir, D. Demir, D.-L. Yao, D.A. Dicus, D.B. Kaplan, D.K. Hong, D.V. Chubukov, D.V. Nanopoulos, D.V. Nanopoulos, E. Accomando, E. Braaten, E. Braaten, E. Christova, E. Mereghetti, E. Mereghetti, E. Shintani, E. Shintani, E. Shintani, E. Witten, E. Áavarez, E.M. Purcell, E.O. Iltan, E.P. Shabalin, E.P. Shabalin, E.T. Rand, ETM Collaboration, F. Berruto, F. del Aguila, F. del Aguila, F. del Aguila, F. Gabbiani, F. Kuchler, F. Xu, F.-K. Guo, F.-K. Guo, G. Barenboim, G. Barton, G. Beall, G. Boyd, G. Buchalla, G. Degrassi, G. Lüders, G. Senjanovic, G.-C. Cho, G.C. Branco, G.C. Branco, G.F. Giudice, G.R. Farrar, G.S. Bali, H. An, H. Ohki, H.-W. Lin, H.-Y. Cheng, H.-Y. Cheng, H.E. Haber, I. Bigi, I. Bigi, I. Stetcu, I.B. Khriplovich, I.B. Khriplovich, I.B. Khriplovich, I.S. Towner, J. Brod, J. Bsaisou, J. Bsaisou, J. Bsaisou, J. Dai, J. de Vries, J. de Vries, J. de Vries, J. de Vries, J. de Vries, J. de Vries, J. Dobaczewski, J. Donoghue, J. Ellis, J. Ellis, J. Ellis, J. Engel, J. Engel, J. Fan, J. Gasser, J. Gasser, J. Gasser, J. Gasser, J. Hisano, J. Hisano, J. Hisano, J. Hisano, J. Hisano, J. Hisano, J. Hisano, J. Kuckei, J. Ng, J. Polchinski, J.-M. Frère, J.A. Aguilar-Saavedra, J.F. Gunion, J.H. Christenson, J.H. de Jesus, J.J. Hudson, J.L. Hewett, J.M. Alarcon, J.M. Alarcon, J.M. Alarcon, J.M. Arnold, J.M. Pendlebury, J.O. Eeg, J.P. Archambault, J.R. Ellis, J.R. Ellis, J.R. Ellis, J.R. Green, J.S.M. Ginges, JLQCD Collaboration, JLQCD Collaboration, K. Abe, K. Agashe, K. Asahi, K. Cheung, K. Choi, K. Choi, K. Choi, K. Fuyuto, K. Harada, K. Higashiyama, K. Higashiyama, K. Ishiwata, K. Ottnad, K. Takeda, K.A. Olive, K.A. Peterson, K.R. Dienes, K.V.P. Latha, K.V.P. Latha, L. Radziute, L. Tiator, L.I. Schiff, M. Anselmino, M. Bishof, M. Brhlik, M. Brhlik, M. Carena, M. Chemtob, M. Dhuria, M. Dine, M. Dine, M. Drees, M. Dugan, M. Endo, M. Engelhardt, M. Franz, M. González-Alonso, M. Hoferichter, M. Jung, M. Kobayashi, M. König, M. Maniatis, M. Pitschmann, M. Pospelov, M. Pospelov, M. Pospelov, M. Pospelov, M. Pospelov, M. Pospelov, M. Radici, M.A. Rosenberry, M.A. Shifman, M.A. Shifman, M.B. Gavela, M.E. Pospelov, M.E. Pospelov, M.J. Ramsey-Musolf, M.W. Kalinowski, MILC Collaboration, MILC Collaboration, N. Arkani-Hamed, N. Arkani-Hamed, N. Auerbach, N. Auerbach, N. Brambilla, N. Fortson, N. Yamanaka, N. Yamanaka, N. Yamanaka, N. Yamanaka, N. Yamanaka, N. Yamanaka, N. Yamanaka, N. Yamanaka, N. Yamanaka, N. Yamanaka, N. Yamanaka, N. Yamanaka, N. Yoshinaga, N. Yoshinaga, N. Yoshinaga, N. Yoshinaga, N. Yoshinaga, N.F. Ramsey, N.G. Deshpande, O. Lebedev, O.P. Sushkov, P. Gubler, P. Gubler, P. Gubler, P. Herczeg, P. Herczeg, P. Huet, P. Nath, P.F. Perez, P.G.H. Sandars, P.G.H. Sandars, P.J. Mohr, P.M. Junnarkar, Particle Data Group, PNDME Collaboration, QCDSF Collaboration, QCDSF Collaboration, QCDSF Collaboration, QCDSF-UKQCD Collaboration, R. Aaij, R. Arnowitt, R. Arnowitt, R. Barbier, R. Barbieri, R. Contino, R. Dashen, R. Gariato, R.A. Senkov, R.D. Peccei, R.D. Young, R.G. Leigh, R.H. Parker, R.J. Crewther, R.M. Godbole, R.N. Mohapatra, R.N. Mohapatra, RQCD Collaboration, S. Abel, S. Adler, S. Aoki, S. Aoki, S. Ban, S. Davidson, S. Dimopoulos, S. Durr, S. Dürr, S. Inoue, S. Narison, S. Pal, S. Pokorski, S. Weinberg, S. Weinberg, S.-M. Zhao, S.A. Abel, S.A. Abel, S.A.R. Ellis, S.F. King, S.K. Lamoreaux, S.L. Glashow, S.L. Glashow, S.M. Barr, S.M. Barr, S.M. Barr, S.M. Barr, S.Y. Ayazi, S.Y. Ayazi, T. Abe, T. Appelquist, T. Appelquist, T. Appelquist, T. Bhattacharya, T. Bhattacharya, T. Bhattacharya, T. Bhattacharya, T. Bhattacharya, T. Falk, T. Fujita, T. Fukuyama, T. Fukuyama, T. Furukawa, T. Hatsuda, T. Hatsuda, T. Hatsuda, T. Ibrahim, T. Ibrahim, T. Ibrahim, T. Inoue, T. Inui, T. Kadoyoshi, T. Mannel, T. Sato, T.-F. Feng, T.-F. Feng, T.H. West, T.P. Cheng, T.P. Cheng, U. Mahanta, UCNA Collaboration, V. Barger, V. Barone, V. Cirigliano, V. Cirigliano, V. Cirigliano, V. Spevak, V.A. Dzuba, V.A. Dzuba, V.A. Dzuba, V.F. Dmitriev, V.F. Dmitriev, V.M. Belayev, V.M. Belayev, V.M. Khatsimovsky, V.M. Khatsymovsky, V.P. Gudkov, V.V. Flambaum, V.V. Flambaum, V.V. Flambaum, V.V. Flambaum, V.V. Flambaum, W. Altmannshofer, W. Altmannshofer, W. Bernreuther, W. Buchmüller, W. Dekens, W. Dekens, W. Fischler, W. Heil, W.-F. Chang, W.C. Griffith, W.C. Haxton, X. Artru, X.-G. He, X.-G. He, X.-G. He, X.-G. He, X.-G. He, X.-G. He, X.-G. He, X.-L. Ren, Y. Adachi, Y. Aoki, Y. Grossman, Y. Kizukuri, Y. Kizukuri, Y. Li, Y. Li, Y. Liao, Y. Nir, Y. Singh, Y. Singh, Y. Singh, Y. Singh, Y. Singh, Y. Zhang, Y. Zhang, Y.-B. Yang, Y.-B. Yang, Y.-H. Song, Y.Y. Keum, Y.Y. Keum, Z. Ye, Z.-B. Kang +440 morecore +1 more sourceAnalysis of the atom-number correlation function in a few-atom trap [PDF]
arXiv, 2006 Stochastic properties of loading and loss mechanism in a few atom trap are
analyzed. An approximate formula is derived for the atom-number correlation
function for the trapped atoms in the limit of reasonably small two-atom loss
rate. Validity of the approximate formula is confirmed by numerical
simulations.arxiv