Results 221 to 230 of about 607,071 (325)

Enhancing Synaptic Plasticity and Multistate Retention of Organic Neuromorphic Devices Using Anion‐Excessive Gel Electrolyte

open access: yesAdvanced Functional Materials, EarlyView.
Anion‐excessive gel‐based organic synaptic transistors (AEG‐OSTs) that can maintain electrical neutrality are developed to enhance synaptic plasticity and multistate retention. Key improvement is attributed to the maintenance of electrical neutrality in the electrolyte even after electrochemical doping, which reduces the Coulombic force acting on ...
Yousang Won   +3 more
wiley   +1 more source

Key Policy Attribute Based Encryption in Cloud Storage

open access: bronze, 2016
Prof. Dipa Dharmadhikari   +1 more
openalex   +1 more source

PRELIVE: A Framework for Predicting Lipid Nanoparticles In Vivo Efficacy and Reducing Reliance on Animal Testing

open access: yesAdvanced Functional Materials, EarlyView.
PREdicting LNP In Vivo Efficacy (PRELIVE) framework enables the prediction of lipid nanoparticle (LNPs) organ‐specific delivery through dual modeling approaches. Composition‐based models using formulation parameters and protein corona‐based models using biological fingerprints both achieve high predictive accuracy across multiple organs.
Belal I. Hanafy   +3 more
wiley   +1 more source

BloomSec: Scalable and privacy-preserving searchable encryption for cloud environments. [PDF]

open access: yesPLoS One
Khan AN   +5 more
europepmc   +1 more source

Scalable Thermal Engineering via Femtosecond Laser‐Direct‐Written Phononic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that femtosecond laser‐induced periodic surface structures (fs‐LIPSS) can function as phononic metasurfaces, reducing thermal conductivity below the plain thin‐film limit. Phonon Monte Carlo analysis reveals that the periodic structures restrict phonon mean free paths.
Hiroki Hamma   +4 more
wiley   +1 more source

Near‐Infrared Light‐Programmable Negative Differential Transconductance in Organic Electrochemical Transistors for Reconfigurable Logic

open access: yesAdvanced Functional Materials, EarlyView.
Organic electrochemical transistors based on a Near‐Infrared (NIR)‐responsive polymer p(C4DPP‐T) and iodide electrolyte exhibit optically programmable negative differential transconductance. NIR illumination triggers an iodine‐mediated redox process, enabling a transition from binary to ternary conductance states within a single‐layer device.
Debdatta Panigrahi   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy