Results 231 to 240 of about 89,532 (346)

Transforming Cellulose Into Functional Three‐Dimensional Structures

open access: yesAdvanced Functional Materials, EarlyView.
Cellulose is promising for replacing synthetic polymers due to its excellent mechanical properties and low cost. This review highlights the recent advancements in transforming cellulose into functional 3D structures, including liquid gels and porous materials.
Xia Sun   +5 more
wiley   +1 more source

Substrate Engineering for Durable Omniphobic Liquid‐Like Surfaces

open access: yesAdvanced Functional Materials, EarlyView.
The significant yet less investigated role of substrates in determining the liquid‐repellency and mechanical durability of liquid‐like surfaces (LLSs) is explored. Thick and crack‐free sol–gel silica intermediary layers are developed that can smoothen substrate asperity roughness even at the micron scale, enabling omniphobic polydimethylsiloxane‐based ...
Tao Wen   +6 more
wiley   +1 more source

Fungi as Turing automata with oracles. [PDF]

open access: yesR Soc Open Sci
Schumann A   +3 more
europepmc   +1 more source

A Cellular Automaton Model of Brain Tumor Treatment and Resistance [PDF]

open access: hybrid, 2002
Jonathan E. Schmitz   +2 more
openalex   +1 more source

Micropatterned Biphasic Printed Electrodes for High‐Fidelity on‐Skin Bioelectronics

open access: yesAdvanced Functional Materials, EarlyView.
Micropatterned biphasic printed electrodes achieve unprecedented skin conformity and low impedance by combining liquid‐metal droplets with microstructured 3D lattices. This scalable approach enables high‐fidelity detection of ECG, EMG, and EEG signals, including alpha rhythms from the forehead, with long‐term comfort and stability.
Manuel Reis Carneiro   +4 more
wiley   +1 more source

Printed Integrated Logic Circuits Based on Chitosan‐Gated Organic Transistors for Future Edible Systems

open access: yesAdvanced Functional Materials, EarlyView.
Edible electronics needs integrated logic circuits for computation and control. This work presents a potentially edible printed chitosan‐gated transistor with a design optimized for integration in circuits. Its implementation in integrated logic gates and circuits operating at low voltage (0.7 V) is demonstrated, as well as the compatibility with an ...
Giulia Coco   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy