Results 11 to 20 of about 96,321 (254)
A generalization of Pappus graph
In this paper, we introduce a new family of cubic graphs Γ(m), called Generalized Pappus graphs, where m ≥ 3. We compute the automorphism group of Γ(m) and characterize when it is a Cayley graph.
Sucharita Biswas, Angsuman Das
doaj +1 more source
The Groups of Isometries of Metric Spaces over Vector Groups
In this paper, we consider the groups of isometries of metric spaces arising from finitely generated additive abelian groups. Let A be a finitely generated additive abelian group.
Sheng Bau, Yiming Lei
doaj +1 more source
Classifying cubic symmetric graphs of order 52p2; pp. 55–60 [PDF]
An automorphism group of a graph is said to be s-regular if it acts regularly on the set of s-arcs in the graph. A graph is s-regular if its full automorphism group is s-regular.
Shangjing Hao, Shixun Lin
doaj +1 more source
Description of the automorphism groups of some Leibniz algebras
Let $L$ be an algebra over a field $F$ with the binary operations $+$ and $[,]$. Then $L$ is called a left Leibniz algebra if it satisfies the left Leibniz identity: $[[a,b],c]=[a,[b,c]]-[b,[a,c]]$ for all elements $a,b,c\in L$.
L.A. Kurdachenko, O.O. Pypka, M.M. Semko
doaj +1 more source
Class-preserving Coleman automorphisms of some classes of finite groups
The normalizer problem of integral group rings has been studied extensively in recent years due to its connection with the longstanding isomorphism problem of integral group rings.
Hai Jingjing, Li Zhengxing, Ling Xian
doaj +1 more source
AUTOMORPHISM GROUPS OF QUANDLES [PDF]
We prove that the automorphism group of the dihedral quandle with n elements is isomorphic to the affine group of the integers mod n, and also obtain the inner automorphism group of this quandle. In [B. Ho and S. Nelson, Matrices and finite quandles, Homology Homotopy Appl.7(1) (2005) 197–208.], automorphism groups of quandles (up to isomorphisms) of ...
Elhamdadi, Mohamed +2 more
openaire +4 more sources
$p$-Groups for which each outer $p$-automorphism centralizes only $p$ elements [PDF]
An automorphism of a group is called outer if it is not an inner automorphism. Let $G$ be a finite $p$-group. Then for every outer $p$-automorphism $\phi$ of $G$ the subgroup $C_G(\phi)=\{x\in G \;|\; x^\phi=x\}$ has order $p$ if and only if $G$ is of ...
Abdollahi, Alireza, Ghoraishi, S. Mohsen
core +3 more sources
FREE GROUPS AND AUTOMORPHISM GROUPS OF INFINITE STRUCTURES
Given a cardinal $\lambda $ with $\lambda =\lambda ^{\aleph _0}$
PHILIPP LÜCKE, SAHARON SHELAH
doaj +1 more source
FINITE $p$-GROUPS WITH SMALL AUTOMORPHISM GROUP
For each prime $p$ we construct a family $\{G_{i}\}$ of finite $p$-groups such that $|\text{Aut}(G_{i})|/|G_{i}|$ tends to zero as $i$ tends to infinity.
JON GONZÁLEZ-SÁNCHEZ +1 more
doaj +1 more source
A Note on Eigenvalues and Asymmetric Graphs
This note is intended as a contribution to the study of quantitative measures of graph complexity that use entropy measures based on symmetry. Determining orbit sizes of graph automorphism groups is a key part of such studies. Here we focus on an extreme
Abdullah Lotfi +2 more
doaj +1 more source

