Results 71 to 80 of about 34,720 (216)
Combination theorems for Wise's power alternative
Abstract We show that Wise's power alternative is stable under certain group constructions, use this to prove the power alternative for new classes of groups and recover known results from a unified perspective. For groups acting on trees, we introduce a dynamical condition that allows us to deduce the power alternative for the group from the power ...
Mark Hagen +2 more
wiley +1 more source
Siegel–Veech constants for cyclic covers of generic translation surfaces
Abstract We compute the asymptotic number of cylinders, weighted by their area to any nonnegative power, on any cyclic branched cover of any generic translation surface in any stratum. Our formulae depend only on topological invariants of the cover and number‐theoretic properties of the degree: in particular, the ratio of the related Siegel–Veech ...
David Aulicino +4 more
wiley +1 more source
ON AUTOMORPHISMS OF THE RELATIVELY FREE GROUPS SATISFYING THE IDENTITY $[x^n; y] = 1$
We prove that if an automorphism j of the relatively free group of the group variety, defined by the identity relation $[x^n; y] = 1$, acts identically on its center, then j has either infinite or odd order, where $n\geq 665$ is an arbitrary odd number.
Sh. A. Stepanyan
semanticscholar +1 more source
Random planar trees and the Jacobian conjecture
Abstract We develop a probabilistic approach to the celebrated Jacobian conjecture, which states that any Keller map (i.e. any polynomial mapping F:Cn→Cn$F\colon \mathbb {C}^n \rightarrow \mathbb {C}^n$ whose Jacobian determinant is a non‐zero constant) has a compositional inverse which is also a polynomial. The Jacobian conjecture may be formulated in
Elia Bisi +5 more
wiley +1 more source
The modular automorphisms of quotient modular curves
Abstract We obtain the modular automorphism group of any quotient modular curve of level N$N$, with 4,9∤N$4,9\nmid N$. In particular, we obtain some unexpected automorphisms of order 3 that appear for the quotient modular curves when the Atkin–Lehner involution w25$w_{25}$ belongs to the quotient modular group. We also prove that such automorphisms are
Francesc Bars, Tarun Dalal
wiley +1 more source
A set of particle representations, familiar from the Standard Model, collectively form a superalgebra. Those representations mirroring the behaviour of the Standard Model's gauge bosons, and three generations of fermions, are each included in this algebra, with exception only to those representations involving the top quark.
N. Furey
wiley +1 more source
Relational Bundle Geometric Formulation of Non‐Relativistic Quantum Mechanics
Abstract A bundle geometric formulation of non‐relativistic many‐particles Quantum Mechanics is presented. A wave function is seen to be a C$\mathbb {C}$‐valued cocyclic tensorial 0‐form on configuration space‐time seen as a principal bundle, while the Schrödinger equation flows from its covariant derivative, with the action functional supplying a ...
J. T. François, L. Ravera
wiley +1 more source
(Random) Trees of Intermediate Volume Growth
ABSTRACT For every function g:ℝ≥0→ℝ≥0$$ g:{\mathbb{R}}_{\ge 0}\to {\mathbb{R}}_{\ge 0} $$ that grows at least linearly and at most exponentially, if it is sufficiently well‐behaved, we can construct a tree T$$ T $$ of uniform volume growth g$$ g $$, or more precisely, C1·g(r/4)≤|BG(v,r)|≤C2·g(4r),for allr≥0andv∈V(T),$$ {C}_1\cdotp g\left(r/4\right)\le \
George Kontogeorgiou, Martin Winter
wiley +1 more source
Three infinite families of chiral 4-polytopes with symmetric automorphism groups [PDF]
Wei-Juan Zhang
openalex +1 more source
ABSTRACT A finite group G$$ G $$ is mixable if a product of random elements, each chosen independently from two options, can distribute uniformly on G$$ G $$. We present conditions and obstructions to mixability. We show that 2‐groups, the symmetric groups, the simple alternating groups, several matrix and sporadic simple groups, and most finite ...
Gideon Amir +3 more
wiley +1 more source

