Autoregressive Conditional Heteroskedasticity (ARCH) Models: A Review [PDF]
Stavros Degiannakis, Evdokia Xekalaki
openalex
Cross-market volatility spillovers between China and the United States: A DCC-EGARCH-t-Copula framework with out-of-sample forecasting. [PDF]
Zeng J, Wu J.
europepmc +1 more source
Enhancing the Prediction Accuracy of Data-Driven Models for Monthly Streamflow in Urmia Lake Basin Based upon the Autoregressive Conditionally Heteroskedastic Time-Series Model [PDF]
Nasrin Fathollahzadeh Attar +10 more
openalex +1 more source
A Proposal for Homoskedastic Modeling With Conditional Auto-Regressive Distributions. [PDF]
Martinez-Beneito MA +3 more
europepmc +1 more source
National and regional Temporal trends and forecasting of preterm birth in brazil: evidence from National birth data (2014-2023) with projections to 2030. [PDF]
Victor A +8 more
europepmc +1 more source
Predictive accuracy of alternative autoregressive conditional heteroskedasticity models
Esta tese tem como objectivo comparar alguns do mais populares modelos de volatilidade, em termos da sua capacidade preditiva. Especificamente, iremos usar três modelos auto-regressivos de heterocedasticidade condicional, GARCH, EGARCH e GJR. Para proceder à comparação entre modelos, iremos servir-nos de alguns dos mais recentes testes de capacidade ...
openaire +1 more source
Improving Forecasts of Generalized Autoregressive Conditional Heteroskedasticity with Wavelet Transform [PDF]
Yu Zhao, Xiaoming Zou, Hong Xu
openalex +1 more source
Score Permutation Based Finite Sample Inference for Generalized\n AutoRegressive Conditional Heteroskedasticity (GARCH) Models [PDF]
Balázs Csanád Csáji
openalex +1 more source

