Results 111 to 120 of about 34,550 (312)

Cat‐Vibrissa‐Inspired Biomass Fiber Aerogels for Flexible and Highly Sensitive Sensors in Monitoring Human Sport

open access: yesAdvanced Functional Materials, EarlyView.
Inspired by cat vibrissae, biomimetic biomass PHFs/SA aerogels (BFAs) are developed via precursor‐assisted in situ polymerization and freeze‐synergistic assembly. These ultralight, porous pressure sensors exhibit high sensitivity and excellent durability, enabling pulse detection, handwriting recognition, Morse code transmission, and notably real‐time ...
Dandan Xie   +6 more
wiley   +1 more source

Potential of power recovery of a subsonic axial fan in windmilling operation [PDF]

open access: yes, 2013
During the last decades, efforts to find efficient green energy solutions have been widely increased in response to environmental concerns. Among all renewable energies, this paper is focused on wind power generation. To this end, a windmilling axial fan
Binder, Nicolas   +3 more
core  

An Ultra‐Robust Memristor Based on Vertically Aligned Nanocomposite with Highly Defective Vertical Channels for Neuromorphic Computing

open access: yesAdvanced Functional Materials, EarlyView.
An ultra‐robust memristor based on SrTiO3‐CeO2 (S‐C) vertically aligned nanocomposite (VAN) achieving exceptional endurance of 1012 switching cycles via interface engineering. Artificial neural networks (ANNs) integrated with S‐C VAN memristors exhibit high training accuracy across multiple datasets.
Zedong Hu   +12 more
wiley   +1 more source

End-wall boundary layer prediction for axial compressors [PDF]

open access: yes
An integral boundary layer procedure was developed for the computation of viscous and secondary flows along the annulus walls of an axial compressor. The procedure is an outgrowth and extension of the pitch-averaged methods of Mellor and Horlock.
Sockol, P. M.
core   +1 more source

Nanoplasmonics Reveal Ionic‐Strength‐Driven Hydration of Nanoparticles

open access: yesAdvanced Functional Materials, EarlyView.
Localized surface plasmon resonance (LSPR) of gold nanoparticles (AuNPs) is modulated by ionic‐strength‐dependent hydration shell compression. A predictive model connects shell thickness to non‐radiative damping and spectral shifts over seven orders of magnitude.
Yeeun Song   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy