Results 281 to 290 of about 130,023 (314)
Some of the next articles are maybe not open access.
Multiresolution B‐spline Radiosity
Computer Graphics Forum, 1995AbstractThis paper introduces a kind of new wavelet radiosity method called multiresolution B‐spline radiosity, which uses B‐splines of different scales to represent radiosity distribution functions. A set of techniques and algorithms, such as function extrapolation, adaptive quadrature, scale adjustment and octree, are proposed to implement it.
Yizhou Yu, Qunsheng Peng
openaire +1 more source
IFAC Proceedings Volumes, 2002
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Kano, Hiroyuki +3 more
openaire +2 more sources
zbMATH Open Web Interface contents unavailable due to conflicting licenses.
Kano, Hiroyuki +3 more
openaire +2 more sources
Extended Cubic Uniform B-spline and α-B-spline
Acta Automatica Sinica, 2008Abstract Spline curve and surface play an important role in CAD and computer graphics. In this paper, we propose several extensions of cubic uniform B-spline. Then, we present the extensions of interpolating α-B-spline based on the new B-splines and the singular blending technique.
Gang XU, Guo-Zhao WANG
openaire +1 more source
Computer Graphics Forum, 1999
This paper proposes to study a spline model, called HB‐splines, that is in fact a B‐spline representation of Hermite splines, combined with some restriction on the differential values at segment boundaries. Although this model does not appear able to offer something new to the computer graphics community, we think that HB‐splines deserve to be ...
Laurent Grisoni +2 more
openaire +1 more source
This paper proposes to study a spline model, called HB‐splines, that is in fact a B‐spline representation of Hermite splines, combined with some restriction on the differential values at segment boundaries. Although this model does not appear able to offer something new to the computer graphics community, we think that HB‐splines deserve to be ...
Laurent Grisoni +2 more
openaire +1 more source
B-Splines on the Circle and Trigonometric B-Splines
1984We shall first introduce the notion of circle splines. Denote by Πn the space of polynomials of degree at most n on the unit circle U = {z € (ℂ: |z| = 1}.
T. N. T. Goodman, S. L. Lee
openaire +1 more source
αB-spline: a linear singular blending B-spline
The Visual Computer, 1996A linear singular blending (LSB) technique can enhance the shape—control capability of the B-spline. This capability is derived from the blending parameters defined at the B-spline control vertices and blends LSB line segments or bilinear surface patches with the B-spline curve or surface.
openaire +1 more source
1990
Wir spezialisieren uns auf solche Polyeder B, fur die B(r) aus Polyedern derselben Sorte besteht. Das ware das Simplex, der Wurfel und der (endlich erzeugte) Kegel. Die Schatten dieser Korper heissen entsprechend simplex spline, box spline und cone spline (Simplex-Spline, Wurfel-Spline, Kegel-Spline). Die freie Wahl der affinen Abbildung P benutzen wir,
Carl de Boor, Manfred R. Trummer
openaire +1 more source
Wir spezialisieren uns auf solche Polyeder B, fur die B(r) aus Polyedern derselben Sorte besteht. Das ware das Simplex, der Wurfel und der (endlich erzeugte) Kegel. Die Schatten dieser Korper heissen entsprechend simplex spline, box spline und cone spline (Simplex-Spline, Wurfel-Spline, Kegel-Spline). Die freie Wahl der affinen Abbildung P benutzen wir,
Carl de Boor, Manfred R. Trummer
openaire +1 more source
1990
Das Konzept der B-Splines mehrerer Veranderlichen beruht auf einer von Schoenberg 1966 bewiesenen Formel fur B-Splines in einer Variablen: SATZ 13a: Sei $$ \operatorname{P} :{{\operatorname{IR} }^{\operatorname{n} }} \to \operatorname{IR} ,y \mapsto y(1) $$ und σ:= [v0,…,vn] ein Simplex im IRn.
Carl de Boor, Manfred R. Trummer
openaire +1 more source
Das Konzept der B-Splines mehrerer Veranderlichen beruht auf einer von Schoenberg 1966 bewiesenen Formel fur B-Splines in einer Variablen: SATZ 13a: Sei $$ \operatorname{P} :{{\operatorname{IR} }^{\operatorname{n} }} \to \operatorname{IR} ,y \mapsto y(1) $$ und σ:= [v0,…,vn] ein Simplex im IRn.
Carl de Boor, Manfred R. Trummer
openaire +1 more source
2002
Splines are piecewise polynomial curves that are differentiable up to a prescribed order. The simplest example is a piecewise linear C 0 spline, i.e., a polygonal curve. Other examples are the piecewise cubic C 1 splines, as constructed in 4.5.
Hartmut Prautzsch +2 more
openaire +1 more source
Splines are piecewise polynomial curves that are differentiable up to a prescribed order. The simplest example is a piecewise linear C 0 spline, i.e., a polygonal curve. Other examples are the piecewise cubic C 1 splines, as constructed in 4.5.
Hartmut Prautzsch +2 more
openaire +1 more source
BIT Numerical Mathematics, 2012
The primary purpose of the study is to develop the theory of quantum B-splines using the two basic tools: the quantum derivative and the quantum blossom. The authors introduce basic definitions, formulas and explicit notations for \(q\)-derivatives, \(q\)-divided differences, and \(q\)-Bernstein basis functions.
Simeonov, Plamen, Goldman, Ron
openaire +2 more sources
The primary purpose of the study is to develop the theory of quantum B-splines using the two basic tools: the quantum derivative and the quantum blossom. The authors introduce basic definitions, formulas and explicit notations for \(q\)-derivatives, \(q\)-divided differences, and \(q\)-Bernstein basis functions.
Simeonov, Plamen, Goldman, Ron
openaire +2 more sources

