Results 171 to 180 of about 1,293,424 (291)
Kelvin Probe Force Microscopy in Bionanotechnology: Current Advances and Future Perspectives
Kelvin probe force microscopy (KPFM) enables the nanoscale mapping of electrostatic surface potentials. While widely applied in materials science, its use in biological systems remains emerging. This review presents recent advances in KPFM applied to biological samples and provides a critical perspective on current limitations and future directions for
Ehsan Rahimi +4 more
wiley +1 more source
Discrete modelling of bacterial conjugation dynamics [PDF]
Ángel Goñi‐Moreno, Martyn Amos
openalex +1 more source
Pl Lysogeny and Bacterial Conjugation [PDF]
D. J. Harris, J. R. Christensen
openaire +1 more source
Sculpting the Future of Bone: The Evolution of Absorbable Materials in Orthopedics
This review summarizes the current status of polymeric, ceramic, and metallic absorbable materials in orthopedic applications, and highlights several innovative strategies designed to enhance mechanical performance, control degradation, and promote bioactivity. We also discuss the progress and translational potential of absorbable materials in treating
Zhao Wang +13 more
wiley +1 more source
The research demonstrates a Mesenchymal Stem Cell‐inspired microneedle platform (MSCi@MN) that addresses chronic diabetic wounds by combining MSC‐derived extracellular nanovesicles (NV)–DNA conjugates in microneedle tips with photothermal MXene in the patch layer.
Chan Ho Moon +21 more
wiley +1 more source
Conjugative Mating Assays for Sequence-specific Analysis of Transfer Proteins Involved in Bacterial Conjugation. [PDF]
Erdogan F +5 more
europepmc +1 more source
Artificial Symbiosis for Bulk Production of Bacterial Cellulose Composites
Co‐cultivation of the cellulose‐producing bacterium with the microalga enables bulk formation of bacterial cellulose under static incubation, with photosynthetically active oxygen‐generating sites throughout the medium. This symbiotic platform supports 3D cellulosic constructs with geometries dictated by the vessel shape.
Kui Yu +7 more
wiley +1 more source
Organic Electrochemical Transistors for Neuromorphic Devices and Applications
Organic electrochemical transistors are emerging as promising platforms for neuromorphic devices that emulate neuronal and synaptic activities and can seamlessly integrate with biological systems. This review focuses on resultant organic artificial neurons, synapses, and integrated devices, with an emphasis on their ability to perform neuromorphic ...
Kexin Xiang +4 more
wiley +1 more source

