Results 291 to 300 of about 3,235,049 (345)
Hydrostatic bearings excel in high‐precision applications, but their performance hinges on a continuous external supply. This study evaluates various material combinations for sliding surfaces to mitigate damage during supply failures or misalignment and to discover the most effective materials identified for enhancing the reliability and efficiency of
Michal Michalec+6 more
wiley +1 more source
Effects of Compelled Weight Shift on Balance Ability in Patients with Stroke
Sung Min Son
openalex +2 more sources
In this study, the mechanical response of Y‐shaped core sandwich beams under compressive loading is investigated, using deep feed‐forward neural networks (DFNNs) for predictive modeling. The DFNN model accurately captures stress–strain behavior, influenced by design parameters and loading rates.
Ali Khalvandi+4 more
wiley +1 more source
Effects of square dance exercise on cognitive function in elderly individuals with mild cognitive impairment: the mediating role of balance ability and executive function. [PDF]
Wang H, Pei Z, Liu Y.
europepmc +1 more source
Bistable Mechanisms 3D Printing for Mechanically Programmable Vibration Control
This work introduces a 3D‐printed bistable mechanism integrated into tuned mass dampers (TMDs) for mechanically adaptive passive vibration suppression. Through optimized geometry, the bistable design provides adaptable vibration reduction across a broad range of scenarios, achieving effective vibration mitigation without complex controls or external ...
Ali Zolfagharian+4 more
wiley +1 more source
Analysis of the Dynamic Balance Recovery Ability by External Perturbation in the Elderly
Da Won Park+3 more
openalex +2 more sources
Molecular dynamics simulations are advancing the study of ribonucleic acid (RNA) and RNA‐conjugated molecules. These developments include improvements in force fields, long‐timescale dynamics, and coarse‐grained models, addressing limitations and refining methods.
Kanchan Yadav, Iksoo Jang, Jong Bum Lee
wiley +1 more source
Beyond Order: Perspectives on Leveraging Machine Learning for Disordered Materials
This article explores how machine learning (ML) revolutionizes the study and design of disordered materials by uncovering hidden patterns, predicting properties, and optimizing multiscale structures. It highlights key advancements, including generative models, graph neural networks, and hybrid ML‐physics methods, addressing challenges like data ...
Hamidreza Yazdani Sarvestani+4 more
wiley +1 more source