Results 261 to 270 of about 2,113,928 (338)

Electron Compensation Enhanced Triboelectric Sensor Assisted by Machine Learning for Tactile Perception Recognition

open access: yesAdvanced Functional Materials, EarlyView.
Integrating polyethyleneimine and carbon black into polyurethane enhances electron transport and mechanical durability. The resulting sensor achieves significantly improved electrical signal and sensitivity, enabling efficient machine learning‐based tactile signal recognition in bionic applications.
Xiangkun Bo   +4 more
wiley   +1 more source

A Balance Training System using a Haptic Device and Its Evaluations

open access: bronze, 2014
Jungwon Yoon   +3 more
openalex   +2 more sources

Using In Situ TEM to Understand the Surfaces of Electrocatalysts at Reaction Conditions: Single‐Atoms to Nanoparticles

open access: yesAdvanced Functional Materials, EarlyView.
This review summarizes recent advances in closed‐cell in situ TEM strategies for accurate determination of the activity and stability of single‐atom catalyst systems during operation. Operando conditions causing dynamic changes of SAC systems are highlighted and we explain why ensemble average‐based optical techniques may benefit from the technological
Martin Ek   +4 more
wiley   +1 more source

Remote monitoring of Tai Chi balance training interventions in older adults using wearable sensors and machine learning. [PDF]

open access: yesSci Rep
Corniani G   +6 more
europepmc   +1 more source

Thermal Phase‐Modulation of Thickness‐Dependent CVD‐Grown 2D In2Se3

open access: yesAdvanced Functional Materials, EarlyView.
A comprehensive study of CVD‐grown 2D In2Se3 reveals a distinct thickness‐dependent phase landscape and a reversible, thermally driven transformation between β″ and β* variants. In situ TEM electron diffraction and Raman spectroscopy reveal structural dynamics, while the structural invariance of the α‐phase in ultrathin regimes highlights its stability—
Dasun P. W. Guruge   +6 more
wiley   +1 more source

Advanced Cellulose‐Based Gels for Wearable Physiological Monitoring: From Fiber Modification to Application Optimization

open access: yesAdvanced Functional Materials, EarlyView.
This review discusses cellulose‐based hydrogels technology, analyzes their application progress in physiological signal monitoring, and explores the effects of pretreatment, crosslinking, and molding methods on gel performance, to provide valuable insights into the efficient utilization of plant fibers and the environmentally friendly development of ...
Zhiming Wang   +8 more
wiley   +1 more source

Home - About - Disclaimer - Privacy