Results 191 to 200 of about 198,043 (299)

Perspectives from the 2025 ISCBI/ISCI joint workshop on genetic stability, clonal monitoring, ethical data governance, and global inclusion in stem cell banking. [PDF]

open access: yesStem Cell Res Ther
Kim JH   +9 more
europepmc   +1 more source

YKT6 Promotes Bladder Cancer Progression by Stabilizing β‐catenin Through USP7‐Mediated Deubiquitination

open access: yesAdvanced Science, EarlyView.
The SNARE protein YKT6 is upregulated in bladder cancer (BLCA), correlating with poor prognosis. YKT6 promotes tumor proliferation and metastasis by activating Wnt/β‐catenin signaling. It recruits Ubiquitin‐Specific Peptidase 7 (USP7) to deubiquitinate and stabilize β‐catenin, enhancing its nuclear accumulation and driving oncogenic gene expression ...
Sheng Tu   +16 more
wiley   +1 more source

Targeted Inhibition of CD74+ Macrophages by Luteolin via CEBPB/P65 Signaling Ameliorates Osteoarthritis Progression

open access: yesAdvanced Science, EarlyView.
This study identifies CD74⁺ macrophages as key drivers of synovial inflammation in osteoarthritis (OA). The flavonoid luteolin is predicted to inhibit this pathway by blocking Nuclear Factor Kappa‐light‐chain‐enhancer of Activated B cells (NF‐κB) signaling. To enhance delivery, a targeted nanoplatform (MDSPL) is developed.
Rui Peng   +15 more
wiley   +1 more source

Metformin Impairs Breast Cancer Growth through the Inhibition of PRMT6

open access: yesAdvanced Science, EarlyView.
Metformin has a biological activity against breast cancer. However, it is largely unknown about its precise therapeutic targets. Here, histone arginine methyltransferase PRMT6 is identified as a new anti‐cancer target for metformin. Metformin directly binds PRMT6 and inhibits its ability to catalyze histone H3R2 asymmetric dimethylation (H3R2me2a ...
Yinsheng Wu   +9 more
wiley   +1 more source

Decreasing barriers to the utilization of cryopreserved sperm in male cancer survivors: an expert review and guide. [PDF]

open access: yesOncologist
Alexander MV   +12 more
europepmc   +1 more source

Cancer Cell‐Intrinsic Cholesterol Induces Lipid‐Associated Macrophage Differentiation via SP1 Palmitoylation to Promote Prostate Cancer Progression

open access: yesAdvanced Science, EarlyView.
Cancer cell‐intrinsic cholesterol promotes the S‐palmitoylation of SP1, increasing its nuclear translocation and driving the transcription and secretion of MDK, which in turn facilitates the differentiation of macrophages into a lipid‐associated phenotype.
Shirong Peng   +12 more
wiley   +1 more source

Home - About - Disclaimer - Privacy