Results 151 to 160 of about 3,935,589 (363)
Analysis of sterilization effect by pulsed dielectric barrier discharge
Jai Hyuk Choi +8 more
openalex +2 more sources
DDX3X induces mesenchymal transition of endothelial cells by disrupting BMPR2 signaling
Elevated DDX3X expression led to downregulation of BMPR2, a key regulator of endothelial homeostasis and function. Our co‐immunoprecipitation assays further demonstrated a molecular interaction between DDX3X and BMPR2. Notably, DDX3X promoted lysosomal degradation of BMPR2, thereby impairing its downstream signaling and facilitating endothelial‐to ...
Yu Zhang +7 more
wiley +1 more source
Metformin mediates mitochondrial quality control in Leber's hereditary optic neuropathy (LHON) fibroblasts carrying mtDNA mutations. At therapeutic levels, metformin activates AMPK signaling to restore mitochondrial dynamics by promoting fusion and restraining fission, while preserving mitochondrial mass, enhancing autophagy/mitophagy and biogenesis ...
Chatnapa Panusatid +3 more
wiley +1 more source
Formation of the B9-domain protein complex MKS1–B9D2–B9D1 is essential as a diffusion barrier for ciliary membrane proteins [PDF]
Misato Okazaki +6 more
openalex +1 more source
Psychometric Evaluation of a Barriers to Mental Health Treatment Questionnaire for Latina/o/x Caregivers of Children and Adolescents [PDF]
Alejandro Vázquez +5 more
openalex +1 more source
This study investigates the protective role of salubrinal against heat‐induced endoplasmic reticulum (ER) stress in mouse spermatogenic cells (GC1 and GC2). By modulating the ER stress pathway, salubrinal alleviates cellular stress and supports spermatogenic cell survival, suggesting its potential as a therapeutic candidate for heat‐related infertility.
Suna Karadeniz Saygili +2 more
wiley +1 more source
Barriers to adopting simulation modelling in construction industry
Mohammed Abdelmegid +5 more
openalex +2 more sources
Enzymatic degradation of biopolymers in amorphous and molten states: mechanisms and applications
This review explains how polymer morphology and thermal state shape enzymatic degradation pathways, comparing amorphous and molten biopolymer structures. By integrating structure–reactivity principles with insights from thermodynamics and enzyme engineering, it highlights mechanisms that enable efficient polymer breakdown.
Anđela Pustak, Aleksandra Maršavelski
wiley +1 more source

