Results 261 to 270 of about 1,121,626 (305)
AIMSPec‐LoC is a novel lab‐on‐a‐chip platform integrating size‐based extracellular vesicle (EVs) separation with label‐free Raman spectroscopy and AI‐powered classification via SKiNET. This high‐throughput, portable system enables real‐time, multiplexed molecular fingerprinting of EVs from biofluids, offering transformative potential for early, non ...
Emma Buchan+3 more
wiley +1 more source
Semiconducting Polymer Nanoparticles as Multimodal Agents for Optical and Magnetic Resonance Imaging
Semiconducting polymer nanoparticles (SPNs) exhibit many advantageous optical and biological properties. Multimodal SPN‐based contrast agents that integrate several imaging modalities yield a wealth of information through the use of different imaging mechanisms.
Faysal A. Farah+3 more
wiley +1 more source
This review highlights recent advances in microfluidic technologies for modeling human aging and age‐related diseases. It explores how organ‐on‐chip platforms improve physiological relevance, enable rejuvenation strategies, facilitate drug screening, detect senescent cells, and identify biomarkers.
Limor Zwi‐Dantsis+5 more
wiley +1 more source
Advanced Oral Delivery Systems for Nutraceuticals
Emerging delivery technologies are explored to overcome barriers to oral nutraceutical absorption. Traditional carriers are compared with novel platforms including biodegradable polymers, MOFs, MPNs, and 3D printing. These systems enhance bioavailability, control release, and enable personalized nutrition.
Xin Yang+4 more
wiley +1 more source
Fiber orientation in electrospun scaffolds affects permeability and fluid dynamics in microfluidic devices. Combining experimental data with computational fluid dynamic simulations, we show that aligned fibers enhance flow uniformity, reduce pressure and shear stress variability.
Elisa Capuana+4 more
wiley +1 more source
Animal‐Free Setup of a 3D Mature Adipocyte‐Macrophage Co‐Culture to Induce Inflammation In Vitro
A completely animal‐free 3D co‐culture is developed using human fat cells and immune cells. Animal‐based materials are replaced with gellan gum hydrogel and a serum‐free medium. Immune cells are effectively activated, producing specific inflammatory signals.
Sophia Nowakowski+3 more
wiley +1 more source
Progress of Immune‐Inducible Biomaterials for Post‐Ablation Cancers
The presence of residual tumors after ablative therapies poses a significant challenge, generally resulting in recurrence and metastases. This review offers a concise overview of immune‐inducible biomaterials from the perspective of the cancer‐immunity cycle, and how they enhance antitumor immunity through diverse mechanisms following ablative ...
Shuangshuang Zhao+7 more
wiley +1 more source
This study developed a nitrogen‐strengthened copper‐iron‐zinc (N‐CuFeZn) alloy bioactive dressing integrated with electromagnetic stimulation. The coaxial dressing, made from 0.04 mm filaments with 1120 MPa tensile strength, showed that electromagnetic activation enhanced therapeutic outcomes by increasing VEGF expression, promoting angiogenesis (2.1 ...
Xiaohui Qiu+9 more
wiley +1 more source
Extracellular vesicles (EVs) are pivotal mediators of intercellular communication and disease, yet the fundamental mechanisms controlling their biogenesis and cargo selection remain unclear. This limitation hinders their diagnostic utility and therapeutic development.
Luís Carvalho Ferraz+2 more
wiley +1 more source
A new oxaliplatin‐based Pt(IV) prodrug bearing a Mn(II) superoxide dismutase mimic is synthesized and studied, in vitro and in vivo, in the context of colorectal cancer. Encapsulation of this prodrug in an easy‐to‐implement PEGylated micelle formulation demonstrated the highest in vivo anticancer activity among all the tested conditions, supporting the
Alvaro Lopez‐Sanchez+14 more
wiley +1 more source