Results 161 to 170 of about 51,647 (238)

Hybrid Microdiscs for Magnetically Induced Non‐Cytotoxic Thermal Actuation and Programmable Biomolecule Delivery

open access: yesAdvanced Functional Materials, EarlyView.
Hybrid magnetic microdiscs with customizable size and composition are engineered through refined photolithography and LbL assembly. Embedded Fe3O4 nanoparticles enable localized, non‐cytotoxic heating, while protein cargos can be incorporated in tunable quantities.
Daniela Iglesias‐Rojas   +13 more
wiley   +1 more source

Why water security matters to cities under extreme heat in the Global North. [PDF]

open access: yesNPJ Urban Sustain
March H   +4 more
europepmc   +1 more source

Scalable Thermal Engineering via Femtosecond Laser‐Direct‐Written Phononic Nanostructures

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that femtosecond laser‐induced periodic surface structures (fs‐LIPSS) can function as phononic metasurfaces, reducing thermal conductivity below the plain thin‐film limit. Phonon Monte Carlo analysis reveals that the periodic structures restrict phonon mean free paths.
Hiroki Hamma   +4 more
wiley   +1 more source

How to Chemically Protect PFAS‐Free Membranes in Fuel Cells: Radical Quenching Poly(vinylphosphonic acid) Layer

open access: yesAdvanced Functional Materials, EarlyView.
Hydrocarbon membranes are a greener alternative to PFSA in PEM fuel cells, but degrade rapidly from radical attack. We present a novel strategy using poly(vinylphosphonic acid) (PVPA) as a local radical scavenger. Incorporated as an interfacial barrier, PVPA enhances chemical stability and significantly extends membrane lifetime under accelerated ...
Hendrik Sannemüller   +6 more
wiley   +1 more source

Biofabrication in suspension media-a decade of advances. [PDF]

open access: yesBiofabrication
Cooke ME   +4 more
europepmc   +1 more source

From Mechanics to Electronics: Influence of ALD Interlayers on the Multiaxial Electro‐Mechanical Behavior of Metal–Oxide Bilayers

open access: yesAdvanced Functional Materials, EarlyView.
Ultrathin AlOxHy interlayers between aluminum films and polymer substrates significantly improve electro‐mechanical properties of flexible thin film systems. By precisely controlling interlayer thickness using atomic layer deposition, this study identifies an optimal interlayer thickness of 5–10 nm that enhances ductility and delays cracking.
Johanna Byloff   +9 more
wiley   +1 more source

Exciton‐Polaritons in Nanoscale Metal‐Organic Frameworks: A Platform for the Reversible Modulation of Strong Light‐Matter Coupling via the Chemical Environment

open access: yesAdvanced Functional Materials, EarlyView.
Strong exciton‐photon coupling is achieved by integrating porphyrin ligand‐based MOF nanoparticles in optical cavities, as evidenced by pronounced polariton branch anticrossing. The porous nature of the resonator enables precise, reversible tuning via vapor pressure, unlocking unprecedented chemical‐environment controlled dynamic polaritonic platforms ...
Beatriz de Sola‐Báez   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy