Results 161 to 170 of about 165,978 (325)
XIX. On some of the phænomena and laws of action of voltaic electricity, and on the construction of voltaic batteries, &c. [PDF]
Christopher Binks, J. Frederic Daniell
openalex +1 more source
The effect of a molecular‐level dual‐ionophilic chitosan passivation layer is investigated on a nanostructured paper electrode featuring an interconnected network structure of highly oxygen‐functionalized single‐walled carbon nanotubes (C‐NPE). This molecular coating enabled a high Coulombic efficiency (>99.0%) and stable cycling over 350 cycles at an ...
Jisoo Kim+11 more
wiley +1 more source
Heterostructured Sn:SnO2 nanodots decorated on reduced graphene oxide can simultaneously enhance conversion kinetics and inhibit dendrite growth, enabling stable lithium–sulfur batteries. Abstract The practical application of lithium–sulfur batteries is limited by polysulfide shuttling and sluggish reaction kinetics at the cathode, as well as ...
Viet Phuong Nguyen+6 more
wiley +1 more source
Graft Copolymer‐Stabilized Liquid Metal Nanoparticles for Lithium‐Ion Battery Self‐Healing Anodes
This study presents a self‐healing liquid metal anode for lithium‐ion batteries, where graft copolymer‐stabilized eutectic gallium indium (EGaIn) nanoparticles enhance stability and rate performance. The fluorinated grafted copolymer forms ionic channels, preventing EGaIn aggregation and facilitating lithium‐ion migration.
Youngwoo Seo+12 more
wiley +1 more source
The self‐transformed Schottky heterojunction on MXene is developed to facilitate the dissociation of Li (solvent)x+ to achieve fast Li+ desolvation to promote rapid sulfur conversion kinetics by decreasing the related barriers, contributing to high‐performance Li─S batteries under low‐temperatures.
Yongzheng Zhang+12 more
wiley +1 more source
Life cycle economic viability analysis of battery storage in electricity market
Yinguo Yang+6 more
openalex +2 more sources
A novel solid polymer electrolyte (SPE) to overcome interface instability in high‐energy‐density lithium metal batteries has been developed. By enhancing ionic conductivity, mechanical elasticity, and adhesion strength through all‐material UV‐crosslinking, the SPE ensures uniform lithium‐ion flow and stable performance—even after bending or cutting ...
Sung Yeon Bae+7 more
wiley +1 more source