Results 141 to 150 of about 273,904 (306)

Multistackable, Domino‐Overlapped CNT Scaffolds Homogeneously Hybridized with BTO‐P(VDF‐TrFE) for High‐Performance Piezoelectric Nanogenerators

open access: yesAdvanced Functional Materials, EarlyView.
A multilayer‐stackable carbon nanotuber (CNT) scaffold‐based piezoelectric nanogenerator (CPENG) with domino‐patterned CNT pillars presents high, stable output (12.3 V, size of 1 cm × 1 cm) over 2000 cycles, operates across a wide temperature range, and efficiently converts energy from real‐life stimuli through optimized CNT length, layer stacking, and
Kwangjun Kim   +3 more
wiley   +1 more source

Geometrically‐Screened, Sterically‐Hindered Additive for Wide‐Temperature Aqueous Zinc‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A molecular‑engineering strategy combining steric hindrance tuning with geometric optimization identifies cellobiose as an ideal additive for aqueous zinc‑ion batteries, enabling stable Zn deposition across a wide temperature range from −30 to 50 °C. Abstract Aqueous zinc‐ion batteries (AZIBs) are emerging as a highly promising alternative to lithium ...
Sida Zhang   +13 more
wiley   +1 more source

Design description of the Schuchuli Village photovoltaic power system [PDF]

open access: yes
A stand alone photovoltaic (PV) power system for the village of Schuchuli (Gunsight), Arizona, on the Papago Indian Reservation is a limited energy, all 120 V (d.c.) system to which loads cannot be arbitrarily added and consists of a 3.5 kW (peak) PV ...
Delombard, R.   +2 more
core   +1 more source

Modulating Interfacial Potential Gradients in Metal−Carbon Catalysts via Phase‐Engineering for Lithium–Sulfur Batteries

open access: yesAdvanced Functional Materials, EarlyView.
It is elucidated that phase engineering of cobalt modulates the interfacial potential gradients of cobalt–carbon electrocatalysts, enhancing the intrinsic electrocatalytic performance. Modulating the dominant crystalline phase of cobalt from a hexagonal close‐packed to a face‐centered cubic enriches the electron density of carbon shells, thereby ...
Ji‐Oh Kim   +13 more
wiley   +1 more source

From Food to Power: Hydrogel Thermoelectrics for Ingestible Electronics

open access: yesAdvanced Functional Materials, EarlyView.
We introduce a fully edible thermoelectric–electrochromic platform that harvests heat from food and converts it into a visible color change. N‐type and p‐type hydrogel thermoelectric generators connected in series power anthocyanin‐based electrochromic displays, demonstrating the feasibility of safe, biodegradable, ingestible systems for on‐food ...
Antonia Georgopoulou   +3 more
wiley   +1 more source

Zinc-air battery energy storage system

open access: yes, 2016
Today’s power grid has limited ability to store excess energy, so electricity must constantly be over-generated to assure reliable supply. Though wind and solar power are promising clean alternatives to fossil fuels, their natural unpredictability and intermittency present major challenges to delivery of the consistent power that is necessary to ...
openaire   +1 more source

Localized High‐Concentration Electrolyte with Water‐Miscible Diluent Enables Stable Zinc Deposition and Long‐Life Aqueous Zinc Metal Batteries

open access: yesAdvanced Functional Materials, EarlyView.
A diisopropyl ether (DIPE)‐based, localized, high‐concentration electrolyte is developed to stabilize both electrodes in aqueous zinc batteries. By reducing water activity and promoting anion‐rich zinc‐ion solvation, it builds robust interphases at both the cathode and anode, ensuring uniform deposition, suppressed corrosion, and highly reversible ...
Yuxuan Wu   +4 more
wiley   +1 more source

Exciton‐Polaritons in Nanoscale Metal‐Organic Frameworks: A Platform for the Reversible Modulation of Strong Light‐Matter Coupling via the Chemical Environment

open access: yesAdvanced Functional Materials, EarlyView.
Strong exciton‐photon coupling is achieved by integrating porphyrin ligand‐based MOF nanoparticles in optical cavities, as evidenced by pronounced polariton branch anticrossing. The porous nature of the resonator enables precise, reversible tuning via vapor pressure, unlocking unprecedented chemical‐environment controlled dynamic polaritonic platforms ...
Beatriz de Sola‐Báez   +7 more
wiley   +1 more source

Dual‐Interface‐Dominant Cathode Architectures Enabling Fast Sulfur Redox and Stable Interfaces in All‐Solid‐State Li‐S Batteries

open access: yesAdvanced Functional Materials, EarlyView.
An optimized carbon host nanostructure enables a dual‐interface‐dominant architecture in sulfur cathodes of solid‐state Li‐S batteries by selectively forming sulfur|carbon and sulfur|solid electrolyte interfaces. This tailored interfacial configuration accelerates sulfur redox kinetics by establishing enriched Li+/e– transport networks, while ...
Zhao Yang   +13 more
wiley   +1 more source

Bio‐Inspired Molecular Events in Poly(Ionic Liquids)

open access: yesAdvanced Functional Materials, EarlyView.
Originating from dipolar and polar inter‐ and intra‐chain interactions of the building blocks, the topologies and morphologies of poly(ionic liquids) (PIL) govern their nano‐ and micro‐processibility. Modulating the interactions of cation‐anion pairs with aliphatic dipolar components enables the tunability of properties, facilitated by “bottom‐up ...
Jiahui Liu, Marek W. Urban
wiley   +1 more source

Home - About - Disclaimer - Privacy