Results 161 to 170 of about 75,549 (359)
PEDOT:PSS—A Key Material for Bioelectronics
PEDOT:PSS ‐ Poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate ‐ is typically processed from water dispersions to form multifunctional and multidimensional constructs with tunable electronic and ionic conductivity. Throught processing engineering, PEDOT:PSS is intergrated in bioelectronic devices that operate efficiently in physiological conditions
Alan Eduardo Ávila Ramírez +5 more
wiley +1 more source
Ionic–Bionic Interfaces: Advancing Iontronic Strategies for Bioelectronic Sensing and Therapy
Ionic–bionic interfaces for bioelectronics leverage ions as multifunctional mediators that combine mechanical compliance, ionic and electronic functionalities, and therapeutic effects. These systems offer real‐time biosignal transduction, effective wound dressing, responsive drug delivery, and seamless interaction between soft tissues and electronic ...
Yun Goo Ro +6 more
wiley +1 more source
Automated guided vehicles (AGVs) serve as pivotal equipment for horizontal transportation in automated container terminals (ACTs), necessitating the optimization of AGV scheduling.
Shaorui Zhou +5 more
doaj +1 more source
The Possibility of Operating Electric Vehicles with Power Batteries in Harsh Climatic Conditions
Kirill Ivanov, Stepan Shalabot
openalex +1 more source
The Prussian Blue Analogue molecular magnet KMnFeHCF is demonstrated as a high‐performance cathode for ultra‐fast aqueous ammonium‐ion batteries. A full cell using KMnFeHCF and graphite delivers ~71 mAh g−1 at 1.25 A g−1 and ~51 mAh g−1 at 2.2 A g−1, retaining 50% capacity after 1850 cycles. Its scalability, cycling stability, and low cost offer strong
Nilasha Maiti +5 more
wiley +1 more source
Research on the Reverse Logistics Network of New Energy Vehicle Power Battery in Liaoning Province [PDF]
Yanxiang Zhang +2 more
openalex +1 more source
Screening Contract Excitation Models Involving Closed-Loop Supply Chains Under Asymmetric Information Games: A Case Study with New Energy Vehicle Power Battery [PDF]
Xiaodong Zhu, Lingfei Yu
openalex +1 more source
The transition between the spinel and rock‐salt phases induces irreversible structural changes in disordered LiNi0.5Mn1.5O4, thereby preventing it from fully releasing its electrochemical capacity during charge/discharge cycling. Abstract High‐voltage disordered spinel LiNi0.5Mn1.5O4 is a promising cathode material for high power density in lithium‐ion
Xingqi Chang +9 more
wiley +1 more source

