Results 251 to 260 of about 75,549 (359)

Impact of Discharging Methods on Electrode Integrity in Recycling of Lithium‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
Electrical and electrochemical discharge methods for end‐of‐life lithium‐ion batteries are compared. Electrochemical discharge better preserves the composition and layered structure of Ni‐rich cathode materials while minimizing residual lithium compounds.
Neha Garg   +3 more
wiley   +1 more source

Comparative Insights and Overlooked Factors of Interphase Chemistry in Alkali Metal‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
This review presents a comparative analysis of Li‐, Na‐, and K‐ion batteries, focusing on the critical role of electrode–electrolyte interphases. It especially highlights overlooked aspects such as SEI/CEI misconceptions, binder effects, and self‐discharge relevance, emphasizing the limitations of current understanding and offering strategies for ...
Changhee Lee   +3 more
wiley   +1 more source

Fuel-Powered Soft Actuators: Emerging Strategies for Autonomous and Miniaturized Robots. [PDF]

open access: yesNanomicro Lett
Zhou C   +11 more
europepmc   +1 more source

Impact of Extrusion and Direct Calendering on Dry‐Coated Cathodes for Sulfidic All‐Solid‐State Batteries

open access: yesAdvanced Energy Materials, EarlyView.
This work demonstrates a parameter optimization for a scalable dry coating process of sulfidic ASSB cathodes (82 wt% CAM, 0.5 wt% PTFE binder) in dry room atmosphere. High‐shear extruder mixing and calendering are used to form a cathode film based on PTFE fibrillation.
Michael Wolf   +9 more
wiley   +1 more source

Stage‐Specific Roles of Deep Eutectic Solvents in Recycling of Spent Lithium‐Ion Batteries

open access: yesAdvanced Energy Materials, EarlyView.
Deep eutectic solvents (DESs) offer tunable acidity, redox, and coordination properties for selective recycling of spent lithium‐ion battery cathodes. Through co‐dissolution, single‐ and two‐metal separations, DESs enable sustainable recovery of critical metals for closed‐loop regeneration of battery‐grade materials, advancing a circular economy for ...
Jingxiu Wang   +4 more
wiley   +1 more source

Advancing Direct Alcohol Fuel Cells: Innovations in Composite‐Based Electrocatalysts and Polymer Support Materials for Enhanced Efficiency

open access: yesAdvanced Energy and Sustainability Research, EarlyView.
This graphical abstract emphasizes the working principle and the various essential factors of the direct methanol fuel cell (DMFCs). Additionally, various parameters, such as the nanoparticle's size and shape, the nature of the electrolyte, the type of support materials, and their fabrication process, also play essential roles in the functioning of the
Kirti Mishra   +3 more
wiley   +1 more source

Home - About - Disclaimer - Privacy