We constructed an early prediction model for postoperative pulmonary complications after thoracoscopic surgery using machine learning and deep learning algorithms.
Cheng-Mao Zhou +4 more
doaj +1 more source
Anomaly detection in chest 18F-FDG PET/CT by Bayesian deep learning. [PDF]
Nakao T +4 more
europepmc +1 more source
A Machine Learning Model for Interpretable PECVD Deposition Rate Prediction
This study develops six machine learning models (k‐nearest neighbors, support vector regression, decision tree, random forest, CatBoost, and backpropagation neural network) to predict SiNx deposition rates in plasma‐enhanced chemical vapor deposition using hybrid production and simulation data.
Yuxuan Zhai +8 more
wiley +1 more source
Bayesian deep learning for reliable oral cancer image classification. [PDF]
Song B +22 more
europepmc +1 more source
Topology‐Aware Machine Learning for High‐Throughput Screening of MOFs in C8 Aromatic Separation
We screened 15,335 Computation‐Ready, Experimental Metal–Organic Frameworks (CoRE‐MOFs) using a topology‐aware machine learning (ML) model that integrates structural, chemical, pore‐size, and topological descriptors. Top‐performing MOFs exhibit aromatic‐enriched cavities and open metal sites that enable π–π and C–H···π interactions, serving as ...
Yu Li, Honglin Li, Jialu Li, Wan‐Lu Li
wiley +1 more source
The origin and evolution of open habitats in North America inferred by Bayesian deep learning models. [PDF]
Andermann T +3 more
europepmc +1 more source
Deep Learning‐Assisted Design of Mechanical Metamaterials
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong +5 more
wiley +1 more source
Patient-specific uncertainty and bias quantification of non-transparent convolutional neural network model through knowledge distillation and Bayesian deep learning. [PDF]
Gong H +5 more
europepmc +1 more source
Large Language Model in Materials Science: Roles, Challenges, and Strategic Outlook
Large language models (LLMs) are reshaping materials science. Acting as Oracle, Surrogate, Quant, and Arbiter, they now extract knowledge, predict properties, gauge risk, and steer decisions within a traceable loop. Overcoming data heterogeneity, hallucinations, and poor interpretability demands domain‐adapted models, cross‐modal data standards, and ...
Jinglan Zhang +4 more
wiley +1 more source
Robust recognition and exploratory analysis of crystal structures via Bayesian deep learning. [PDF]
Leitherer A, Ziletti A, Ghiringhelli LM.
europepmc +1 more source

