Results 221 to 230 of about 898,588 (270)
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin +4 more
wiley +1 more source
This article establishes a Taguchi–Bayesian sampling strategy to reconstruct polymer processing–property landscape at minimal sampling cost, generically building the roadmap for materials database construction from sampling their vast design space. This sampling strategy is featured by an alternating lesson between uniformity and representativeness ...
Han Liu, Liantang Li
wiley +1 more source
A low‐cost, self‐driving laboratory is developed to democratize autonomous materials discovery. Using this "frugal twin" hardware architecture with Bayesian optimization, the platform rapidly converges to target lower critical solution temperature (LCST) values while self‐correcting from off‐target experiments, demonstrating an accessible route to data‐
Guoyue Xu, Renzheng Zhang, Tengfei Luo
wiley +1 more source
Predictive models successfully screen nanoparticles for toxicity and cellular uptake. Yet, complex biological dynamics and sparse, nonstandardized data limit their accuracy. The field urgently needs integrated artificial intelligence/machine learning, systems biology, and open‐access data protocols to bridge the gap between materials science and safe ...
Mariya L. Ivanova +4 more
wiley +1 more source
SuperResNET is a powerful integrated software that reconstructs network architecture and molecular distribution of subcellular structures from single molecule localization microscopy datasets. SuperResNET segments the nuclear pore complex and corners, extracts size, shape, and network features of all segmented nuclear pores and uses modularity analysis
Yahongyang Lydia Li +6 more
wiley +1 more source
Predicting Performance of Hall Effect Ion Source Using Machine Learning
This study introduces HallNN, a machine learning tool for predicting Hall effect ion source performance using a neural network ensemble trained on data generated from numerical simulations. HallNN provides faster and more accurate predictions than numerical methods and traditional scaling laws, making it valuable for designing and optimizing Hall ...
Jaehong Park +8 more
wiley +1 more source
A skin‐conformal wearable device based on laser‐induced graphene is developed for continuous strain measurement across the circumference of the forearm for gesture recognition and hand‐tracking applications. Post material optimization, the strain sensor array is integrated with a wearable wireless readout circuit for real‐time control of a robotic arm,
Vinay Kammarchedu +2 more
wiley +1 more source
Some of the next articles are maybe not open access.
Related searches:
Related searches:
2007
In this chapter, we introduce the basics of Bayesian data analysis. The key ingredients to a Bayesian analysis are the likelihood function, which reflects information about the parameters contained in the data, and the prior distribution, which quantifies what is known about the parameters before observing data.
Mark E, Glickman, David A, van Dyk
openaire +2 more sources
In this chapter, we introduce the basics of Bayesian data analysis. The key ingredients to a Bayesian analysis are the likelihood function, which reflects information about the parameters contained in the data, and the prior distribution, which quantifies what is known about the parameters before observing data.
Mark E, Glickman, David A, van Dyk
openaire +2 more sources
2006
Abstract This chapter provides a brief introduction to the theory and computation of Bayesian statistics and its applications to molecular evolution. It uses simple examples, such as distance estimation under the JC69 model, to introduce the general principles.
+5 more sources
Abstract This chapter provides a brief introduction to the theory and computation of Bayesian statistics and its applications to molecular evolution. It uses simple examples, such as distance estimation under the JC69 model, to introduce the general principles.
+5 more sources

