Results 211 to 220 of about 539,449 (277)

A Physics Constrained Machine Learning Pipeline for Young's Modulus Prediction in Multimaterial Hyperelastic Cylinders Guided by Contact Mechanics

open access: yesAdvanced Intelligent Discovery, EarlyView.
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas   +4 more
wiley   +1 more source

Factorization Machine‐Based Active Learning for Functional Materials Design with Optimal Initial Data

open access: yesAdvanced Intelligent Discovery, EarlyView.
This work investigates the optimal initial data size for surrogate‐based active learning in functional material optimization. Using factorization machine (FM)‐based quadratic unconstrained binary optimization (QUBO) surrogates and averaged piecewise linear regression, we show that adequate initial data accelerates convergence, enhances efficiency, and ...
Seongmin Kim, In‐Saeng Suh
wiley   +1 more source

FastCat: Autonomous Discovery of Multielement Layered Double Hydroxide Alloy Catalysts for Alkaline Oxygen Evolution Reaction

open access: yesAdvanced Intelligent Discovery, EarlyView.
A machine learning‐guided self‐driving laboratory screened over 500 nickel‐based layered double‐hydroxide catalysts for alkaline oxygen evolution. Out of the eight metals, the robot uncovered a quaternary Ni–Fe–Cr–Co catalysts requiring only 231 mV overpotential to reach 20 mA cm−2.
Nis Fisker‐Bødker   +3 more
wiley   +1 more source

Bayesian Exploration of Metal‐Organic Framework‐Derived Nanocomposites for High‐Performance Supercapacitors

open access: yesAdvanced Intelligent Discovery, EarlyView.
An AI‐assisted approach is introduced to decode synthesis–performance relationships in metal‐organic framework‐derived supercapacitor materials using Bayesian optimization and predictive modeling, streamlining the search for optimal energy storage properties.
David Gryc   +8 more
wiley   +1 more source

Advances in Thermal Modeling and Simulation of Lithium‐Ion Batteries with Machine Learning Approaches

open access: yesAdvanced Intelligent Discovery, EarlyView.
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin   +4 more
wiley   +1 more source

Taguchi–Bayesian Sampling: A Roadmap for Polymer Database Construction Toward Small Representative Machine Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
This article establishes a Taguchi–Bayesian sampling strategy to reconstruct polymer processing–property landscape at minimal sampling cost, generically building the roadmap for materials database construction from sampling their vast design space. This sampling strategy is featured by an alternating lesson between uniformity and representativeness ...
Han Liu, Liantang Li
wiley   +1 more source

The continual reassessment method for multiple toxicity grades: a bayesian model selection approach. [PDF]

open access: yesPLoS One, 2014
Pan H   +8 more
europepmc   +1 more source

Self‐Driving Laboratory Optimizes the Lower Critical Solution Temperature of Thermoresponsive Polymers

open access: yesAdvanced Intelligent Discovery, EarlyView.
A low‐cost, self‐driving laboratory is developed to democratize autonomous materials discovery. Using this "frugal twin" hardware architecture with Bayesian optimization, the platform rapidly converges to target lower critical solution temperature (LCST) values while self‐correcting from off‐target experiments, demonstrating an accessible route to data‐
Guoyue Xu, Renzheng Zhang, Tengfei Luo
wiley   +1 more source

Home - About - Disclaimer - Privacy