Results 61 to 70 of about 394,931 (262)
Active Learning‐Guided Accelerated Discovery of Ultra‐Efficient High‐Entropy Thermoelectrics
An active learning framework is introduced for the accelerated discovery of high‐entropy chalcogenides with superior thermoelectric performance. Only 80 targeted syntheses, selected from 16206 possible combinations, led to three high‐performance compositions, demonstrating the remarkable efficiency of data‐driven guidance in experimental materials ...
Hanhwi Jang +8 more
wiley +1 more source
CausalTrail: Testing hypothesis using causal Bayesian networks [version 1; referees: 2 approved]
Summary Causal Bayesian Networks are a special class of Bayesian networks in which the hierarchy directly encodes the causal relationships between the variables. This allows to compute the effect of interventions, which are external changes to the system,
Daniel Stöckel +3 more
doaj +1 more source
This review highlights the role of self‐assembled monolayers (SAMs) in perovskite solar cells, covering molecular engineering, multifunctional interface regulation, machine learning (ML) accelerated discovery, advanced device architectures, and pathways toward scalable fabrication and commercialization for high‐efficiency and stable single‐junction and
Asmat Ullah, Ying Luo, Stefaan De Wolf
wiley +1 more source
Superionic Amorphous Li2ZrCl6 and Li2HfCl6
Amorphous Li2HfCl6 and L2ZrCl6 are shown to be promising solid‐state electrolytes with predicted ionic conductivities >20 mS·cm−1. Molecular dynamics simulations with machine‐learning force fields reveal that anion vibrations and flexible MCl6 octahedra soften the Li coordination cage and enhance mobility. Correlation between Li‐ion diffusivity and the
Shukai Yao, De‐en Jiang
wiley +1 more source
Hydrogel‐Based Functional Materials: Classifications, Properties, and Applications
Conductive hydrogels have emerged as promising materials for smart wearable devices due to their outstanding flexibility, multifunctionality, and biocompatibility. This review systematically summarizes recent progress in their design strategies, focusing on monomer systems and conductive components, and highlights key multifunctional properties such as
Zeyu Zhang, Zao Cheng, Patrizio Raffa
wiley +1 more source
Minimax Bayesian Neural Networks
Robustness is an important issue in deep learning, and Bayesian neural networks (BNNs) provide means of robustness analysis, while the minimax method is a conservative choice in the classical Bayesian field.
Junping Hong, Ercan Engin Kuruoglu
doaj +1 more source
Reducing Personalization Time and Energy Cost While Walking Outdoors with a Portable Exosuit
Rapid Real‐World Optimization! An AF‐based human‐in‐the‐loop optimization strategy rapidly personalizes a portable hip extension exosuit for incline walking. Real‐time Bayesian optimization of assistive force significantly reduces metabolic energy—up to 16.2%—while converging in just 3 min 24 s.
Kimoon Nam +7 more
wiley +1 more source
This work presents a spatial-component (SC) based approach to aid the diagnosis of Alzheimer's disease (AD) using magnetic resonance images. In this approach, the whole brain image is subdivided in regions or spatial components, and a Bayesian network is
Ignacio eA. Illán +3 more
doaj +1 more source
The rivers of KwaZulu-Natal, South Africa, are being impacted by various anthropogenic activities that threaten their sustainability. Our study demonstrated how Bayesian networks could be used to conduct an environmental risk assessment of ...
Olalekan A. Agboola +3 more
doaj +1 more source
Flexible Sensor‐Based Human–Machine Interfaces with AI Integration for Medical Robotics
This review explores how flexible sensing technology and artificial intelligence (AI) significantly enhance human–machine interfaces in medical robotics. It highlights key sensing mechanisms, AI‐driven advancements, and applications in prosthetics, exoskeletons, and surgical robotics.
Yuxiao Wang +5 more
wiley +1 more source

