Results 131 to 140 of about 224,776 (267)
Bayesian regularized neural network
Citation: 'Bayesian regularized neural network' in the IUPAC Compendium of Chemical Terminology, 5th ed.; International Union of Pure and Applied Chemistry; 2025. Online version 5.0.0, 2025. 10.1351/goldbook.11410 • License: The IUPAC Gold Book is licensed under Creative Commons Attribution-ShareAlike CC BY-SA 4.0 International for individual terms ...
openaire +1 more source
A physics‐guided machine learning framework estimates Young's modulus in multilayered multimaterial hyperelastic cylinders using contact mechanics. A semiempirical stiffness law is embedded into a custom neural network, ensuring physically consistent predictions. Validation against experimental and numerical data on C.
Christoforos Rekatsinas +4 more
wiley +1 more source
This perspective highlights how knowledge‐guided artificial intelligence can address key challenges in manufacturing inverse design, including high‐dimensional search spaces, limited data, and process constraints. It focused on three complementary pillars—expert‐guided problem definition, physics‐informed machine learning, and large language model ...
Hugon Lee +3 more
wiley +1 more source
This work investigates the optimal initial data size for surrogate‐based active learning in functional material optimization. Using factorization machine (FM)‐based quadratic unconstrained binary optimization (QUBO) surrogates and averaged piecewise linear regression, we show that adequate initial data accelerates convergence, enhances efficiency, and ...
Seongmin Kim, In‐Saeng Suh
wiley +1 more source
Adversarial Robustness Certification for Bayesian Neural Networks
AbstractWe study the problem of certifying the robustness of Bayesian neural networks (BNNs) to adversarial input perturbations. Specifically, we define two notions of robustness for BNNs in an adversarial setting: probabilistic robustness and decision robustness.
Matthew Wicker +3 more
openaire +2 more sources
A machine learning‐guided self‐driving laboratory screened over 500 nickel‐based layered double‐hydroxide catalysts for alkaline oxygen evolution. Out of the eight metals, the robot uncovered a quaternary Ni–Fe–Cr–Co catalysts requiring only 231 mV overpotential to reach 20 mA cm−2.
Nis Fisker‐Bødker +3 more
wiley +1 more source
Nonlinear modeling with confidence estimation using Bayesian neural networks
There is a growing interest in the use of neural networks in civil engineering to model complicated nonlinearity problems. A recent enhancement to the conventional back-propagation neural network algorithm is the adoption of a Bayesian inference ...
A.T.C. Goh, C.G. Chua
doaj
An AI‐assisted approach is introduced to decode synthesis–performance relationships in metal‐organic framework‐derived supercapacitor materials using Bayesian optimization and predictive modeling, streamlining the search for optimal energy storage properties.
David Gryc +8 more
wiley +1 more source
Heat generation in lithium‐ion batteries affects performance, aging, and safety, requiring accurate thermal modeling. Traditional methods face efficiency and adaptability challenges. This article reviews machine learning‐based and hybrid modeling approaches, integrating data and physics to improve parameter estimation and temperature prediction ...
Qi Lin +4 more
wiley +1 more source

