Results 161 to 170 of about 16,133,606 (323)

Vivid Structural Coloration in Transparent MXene‐Cellulose Nanocrystals Composite Films

open access: yesAdvanced Functional Materials, EarlyView.
Vivid structural coloration in reflectance and high transparency in transmittance modes are observed in biopolymer‐layered composite films. The ultrathin multilayered structures have unique optical appearance, near‐infrared bandgap, and strong optical reflection caused by alternating MXene and cellulose nanocrystals layers with high refractive index ...
Botyo Dimitrov   +12 more
wiley   +1 more source

Electric Pulse Regulated MXene Based Nanozymes for Integrative Bioelectricity Immuno‐Cancer Therapy

open access: yesAdvanced Functional Materials, EarlyView.
MXenzyme‐mediated bioelectricity cancer therapy (MXenzyme‐BECT) enhances cancer cell death through irreversible depolarization, ion channel disruption, ROS generation, and immunogenic cell death. Computational simulations reveal the electrical mechanisms by which MXenzyme acts on single cells and support to predict treatment parameters. Next‐generation
Sanghee Lee   +6 more
wiley   +1 more source

Ultra‐Effective Light‐Activated Antibacterial Activity via Carboxyl Functionalized Graphene Quantum Dots and Films

open access: yesAdvanced Functional Materials, EarlyView.
Carboxyl‐functionalized graphene quantum dots (cGQDs) exhibit high singlet oxygen quantum yield due to strong spin–orbit coupling. cGQDs achieve minimum bactericidal concentration of only 0.4 µg mL−1 against S. aureus under low‐intensity illumination.
Muhammad Hassnain   +10 more
wiley   +1 more source

Biofilm Control by Active Topography with Mucin Coating

open access: yesAdvanced Functional Materials, EarlyView.
This study reports a new antifouling strategy based on a bioinspired design. Mucin coating enhances biofilm control by active topography with beating micron‐sized pillars. Besides the mechanical force of beating pillars, the antibiofilm activities also involve biological factors since mucin coating inhibits swarming motility and c‐di‐GMP synthesis in ...
Zehui Han   +4 more
wiley   +1 more source

Gate‐Tunable Hole Transport in In‐Plane Ge Nanowires by V‐Groove Confined Selective Epitaxy

open access: yesAdvanced Functional Materials, EarlyView.
Ge nanowires are promising for hole spin‐based quantum processors, requiring direct integration onto Si wafers. This work introduces V‐groove‐confined selective epitaxy for in‐plane nanowire growth on Si. Structural and low‐temperature transport measurements confirm their high crystalline quality, gate‐tunable hole densities, and mobility.
Santhanu Panikar Ramanandan   +11 more
wiley   +1 more source

3D Nano‐architected Polymer Shell Enables Reconfigurable Stabilized Blue Phase Soft Crystals

open access: yesAdvanced Functional Materials, EarlyView.
Spherical polymer shells featuring nanostructure of blue phase (BP) disclinations form via in situ photo‐polymerization within BP liquid crystals, providing controlled anchoring for BP nucleation and growth at room temperature and beyond. This architected confinement enhances BP thermal stability over a broad temperature range while enabling dynamic ...
Sepideh Norouzi   +8 more
wiley   +1 more source

Dual‐Mode Film Based on Highly Scattering Nanofibers and Upcycled Chips‐Bags for Year‐Round Thermal Management

open access: yesAdvanced Functional Materials, EarlyView.
Intelligent radiative cooling devices, adaptable to various weather conditions, have the potential for year‐round energy savings. This study introduces a sustainable dual‐mode film made from polycaprolactone nanofibers and upcycled chip bags for effective thermal management.
Qimeng Song   +4 more
wiley   +1 more source

Correspondenz. [Bd.]3, 1805

open access: yes
Ärakiri tundmatu käega Kirja 1. rida adressaadi nimega K. Morgensterni käega Tekstis tihedalt mahakriipsutatud sõnad – l 16v rida 11: „Charlotte L.“; l 17 rida 16-17: „Charlottte von Lilienfeld“; l 17 rida 23: „Mutter“ ja rida 24: „Tochter“
openaire   +1 more source

Home - About - Disclaimer - Privacy