Results 171 to 180 of about 263,500 (249)

RIG‐I Mediated Neuron‐Specific IFN Type 1 Signaling in FUS‐ALS Induces Neurodegeneration and Offers New Biomarker‐Driven Individualized Treatment Options for (FUS‐)ALS

open access: yesAdvanced Science, EarlyView.
Using iPSC‐derived motoneurons and postmortem tissue from FUS‐ALS patients, it is demonstrated that increased mitochondrial transcription leads to elevated cytosolic double‐stranded RNA (dsRNA) levels. This aberrant accumulation activates a RIG‐I–dependent innate immune response leading to neurodegeneration, which is amenable for FDA‐ and EMA‐approved ...
Marcel Naumann   +26 more
wiley   +1 more source

Genome‐Wide by Lifetime Environment Interaction Studies of Brain Imaging Phenotypes

open access: yesAdvanced Science, EarlyView.
This study explores genome‐wide by lifetime environment interactions on brain imaging phenotypes. Gene‐environment interactions explain more phenotypic variance than main effects, pinpoint regulatory variants, and reveal exposure‐specific biological pathways.
Sijia Wang   +51 more
wiley   +1 more source

Allosteric Modulation of Pathological Ataxin‐3 Aggregation: A Path to Spinocerebellar Ataxia Type‐3 Therapies

open access: yesAdvanced Science, EarlyView.
This study uncovers a new allosteric site in the Josephin domain of ataxin‐3 targeted by the molecular tweezer CLR01, which modulates protein aggregation, improves synaptic function in neuronal cells, and delays motor dysfunction in animal models.
Alexandra Silva   +28 more
wiley   +1 more source

Management / Ethics / Welfare Genetics / Breeding / Gene Function Bioresource Developmental Engineering / Regenerative Therapy Infectious Diseases / Immunology / Pathology Disease Model Neuroscience / Behavior

open access: bronze, 2011
Yoshihiro Inoue   +63 more
openalex   +2 more sources

Cultural Attachment: From Behavior to Computational Neuroscience [PDF]

open access: gold, 2019
Wei-Jie Yap   +3 more
openalex   +1 more source

Delta Opioid Receptors within the Cortico‐Thalamic Circuitry Underlie Hyperactivity Induced by High‐Dose Morphine

open access: yesAdvanced Science, EarlyView.
Morphine activates the excitatory cingulate cortex–intermediate rostrocaudal division of zona incerta (Cg‐ZIm) pathway to drive hyperlocomotion in mice. Inhibiting the Cg‐ZIm pathway attenuates both acute and chronic morphine‐induced hyperlocomotion, while its activation mimics morphine's motor effects.
Chun‐Yue Li   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy