Results 91 to 100 of about 1,461 (202)

Single variable Bell polynomials

open access: yesCollectanea Mathematica, 1962
Die Arbeit behandelt die Zerlegung (mod 2) der Bellschen Polynome \[ A_n(x) = \sum_{k=0}^n S(n, k) x^k \] in Faktoren. Die Koeffizienten sind die Stirlingschen Zahlen \[ S(n, k) = \frac1{k!} \sum_{r=0}^k (-1)^{k-r)} \binom{k}{r} r^n. \] Anstelle von \(A_n(x)\) rechnet Verf.
openaire   +2 more sources

Entangled States Are Harder to Transfer than Product States. [PDF]

open access: yesEntropy (Basel), 2022
Apollaro TJG   +4 more
europepmc   +1 more source

Home - About - Disclaimer - Privacy