Results 241 to 250 of about 1,851,910 (300)
Cu‐based catalysts as a cornerstone in advancing sustainable energy technologies are fully reviewed in this manuscript, highlighting their potential in photo‐ and electrocatalysis. It includes metallic copper, copper oxides, copper sulfides, copper halide perovskites, copper‐based metal–organic frameworks (MOFs), and covalent organic frameworks (COFs),
Jéssica C. de Almeida +16 more
wiley +1 more source
By a simple anti‐Galvanic reaction, up to six copper atoms could be preferably doped into the Ag2(SR)5 staple motifs and Ag20 dodecahedral shell of an atomically precise Ag44(SR)30 nanocluster. When anatase TiO2 is used as substrate, the (AgCu)44/TiO2 photocatalyst exhibited much improved activity in photocatalytic CO2 reduction compared to Ag44/TiO2 ...
Ye Liu +5 more
wiley +1 more source
MXene dervied CoFe composites show increased initial Oxygen Evolution Reaction (OER) activity compared to the pure CoFe and MXene in an Anion Exchange Membrane device. Vanadium vacancies in the MXene plays a role in increased OER activity and hinders Fe leaching in the AEM device over using the pure V2C MXene as a support material for the CoFe ...
Can Kaplan +16 more
wiley +1 more source
Plasmonic photocatalytic ammonia decomposition occurs at near‐room temperature on a plasmonic Au nanocone array under visible light illumination. The nanostructure efficiently harnesses plasmonic modes, leading to increased reaction rates upon plasmon decay.
Thanh‐Lam Bui +17 more
wiley +1 more source
This work reports the self‐assembly of a pyrene derivative into two distinct nanostructures and their application in visible‐light photocatalysis. The two nanostructures exhibit completely different yet complementary photocatalytic activities, promoting either H2 or H2O2 evolution.
Marianna Barbieri +6 more
wiley +1 more source
Bimetallic Nanoparticles as Cocatalysts for Photocatalytic Hydrogen Production
Recent developments have introduced bimetallic nanoparticles as effective cocatalysts for photocatalytic systems. This review explores the rapidly expanding research on bimetallic cocatalysts for photocatalytic production of hydrogen, emphasizing the creation of carrier‐selective contacts, localized surface plasmon resonance effects, methodologies for ...
Yufen Chen +4 more
wiley +1 more source
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou +4 more
wiley +1 more source
Emergence of Light‐Transforming Layered Hybrid Halide Perovskites
The emerging class of light‐transforming layered halide perovskite materials is reviewed, outlining challenges for their development and perspectives toward application in the future. Abstract Layered hybrid halide perovskites (LHPs) have attracted considerable attention in optoelectronics.
Ghewa AlSabeh, Jovana V. Milić
wiley +1 more source
Clean‐Limit 2D Superconductivity in a Thick Exfoliated Kagome Film
This study reports clean‐limit 2D superconductivity in a thick kagome system, analogous to the 3D case. It observes a drop in superfluid stiffness near the superconducting transition and a cusp‐like feature in the angular dependence of the upper critical field.
Fei Sun +3 more
wiley +1 more source
This study presents the BioCLEAR system, a highly transparent and conductive neural electrode array composed of silver nanowires (AgNWs) and doped PEDOT:PSS, enabling neural recordings with minimal optical artifacts. When integrated with a GRIN lens, this cost‐effective neural implant allows simultaneous electrophysiological recording and GCaMP6‐based ...
Dongjun Han +17 more
wiley +1 more source

