Results 31 to 40 of about 7,881 (187)
Degenerate Poly-Lah-Bell Polynomials and Numbers
Many mathematicians studied “poly” as a generalization of the well-known special polynomials such as Bernoulli polynomials, Euler polynomials, Cauchy polynomials, and Genocchi polynomials. In this paper, we define the degenerate poly-Lah-Bell polynomials
Taekyun Kim, Hye Kyung Kim
doaj +1 more source
In recent years, studying degenerate versions of various special polynomials and numbers has attracted many mathematicians. Here we introduce degenerate type 2 Bernoulli polynomials, fully degenerate type 2 Bernoulli polynomials, and degenerate type 2 ...
Dae San Kim +3 more
doaj +1 more source
Some Identities of Degenerate Bell Polynomials
The new type degenerate of Bell polynomials and numbers were recently introduced, which are a degenerate version of Bell polynomials and numbers and are different from the previously introduced partially degenerate Bell polynomials and numbers.
Taekyun Kim +3 more
doaj +1 more source
Sums of Products of Kronecker's Double Series [PDF]
Closed expressions are obtained for sums of products of Kronecker's double series. Corresponding results are derived for functions which are an elliptic analogue of the periodic Euler polynomials.
Machide, Tomoya
core +1 more source
Special Numbers and Polynomials Including Their Generating Functions in Umbral Analysis Methods
In this paper, by applying umbral calculus methods to generating functions for the combinatorial numbers and the Apostol type polynomials and numbers of order k, we derive some identities and relations including the combinatorial numbers, the Apostol ...
Yilmaz Simsek
doaj +1 more source
Errata: “Bernoulli and Euler numbers and orthogonal polynomials,” vol. 26 (1959), pp. 1–15
L. Carlitz
openalex +3 more sources
Some identities related to degenerate Stirling numbers of the second kind
The degenerate Stirling numbers of the second kind were introduced as a degenerate version of the ordinary Stirling numbers of the second kind. They appear very frequently when one studies various degenerate versions of some special numbers and ...
Kim Taekyun, Kim Dae San, Kim Hye Kyung
doaj +1 more source
Generalized Tepper’s Identity and Its Application
The aim of this paper is to study the Tepper identity, which is very important in number theory and combinatorial analysis. Using generating functions and compositions of generating functions, we derive many identities and relations associated with the ...
Dmitry Kruchinin +2 more
doaj +1 more source
On a class of $q$-Bernoulli, $q$-Euler and $q$-Genocchi polynomials [PDF]
The main purpose of this paper is to introduce and investigate a class of $q$-Bernoulli, $q$-Euler and $q$-Genocchi polynomials. The $q$-analogues of well-known formulas are derived.
Mahmudov, N. I., Momenzadeh, M.
core +3 more sources
Some Identities for Euler and Bernoulli Polynomials and Their Zeros
In this paper, we study some special polynomials which are related to Euler and Bernoulli polynomials. In addition, we give some identities for these polynomials. Finally, we investigate the zeros of these polynomials by using the computer.
Taekyun Kim, Cheon Seoung Ryoo
doaj +1 more source

