Results 71 to 80 of about 7,881 (187)
Identities concerning Bernoulli and Euler polynomials
We establish two general identities for Bernoulli and Euler polynomials, which are of a new type and have many consequences. The most striking result in this paper is as follows: If $n$ is a positive integer, $r+s+t=n$ and $x+y+z=1$, then we have $$rF(s ...
Pan, Hao, Sun, Zhi-Wei
core +4 more sources
On the Numerical Evaluation of Wall Shear Stress Using the Finite Element Method
We compare a modified variationally consistent boundary‐flux method for wall shear stress evaluation with standard projection technique in aneurysm models and two benchmark examples, demonstrating that the interplay between finite element choice, meshing strategy, and evaluation method has a significant and sometimes counter‐intuitive impact on ...
Jana Brunátová +3 more
wiley +1 more source
Some identities involving Bernoulli, Euler and degenerate Bernoulli numbers and their applications
The paper has two main objectives. Firstly, it explores the properties of hyperbolic cosine and hyperbolic sine functions by using Volkenborn and the fermionic p-adic integrals, respectively.
Taekyun Kim, Dae San Kim, Hye Kyung Kim
doaj +1 more source
Interpolation function of the genocchi type polynomials
The main purpose of this paper is to construct not only generating functions of the new approach Genocchi type numbers and polynomials but also interpolation function of these numbers and polynomials which are related to a, b, c arbitrary positive real ...
Apostol T. M. +23 more
core +1 more source
Free energy of spherical Coulomb gases with point charges
Abstract We consider two‐dimensional Coulomb gases on the Riemann sphere with determinantal or Pfaffian structures, under external potentials that are invariant under rotations around the axis connecting the north and south poles, and with microscopic point charges inserted at the poles.
Sung‐Soo Byun +3 more
wiley +1 more source
The goal of this paper is to demonstrate many explicit computational formulas and relations involving the Changhee polynomials and numbers and their differential equations with the help of functional equations and partial derivative equations for ...
Ji Suk So, Yilmaz Simsek
doaj +1 more source
Some identities of higher-order Bernoulli, Euler and Hermite polynomials arising from umbral calculus [PDF]
In this paper, we study umbral calculus to have alternative ways of obtaining our results. That is, we derive some interesting identities of the higher-order Bernoulli, Euler and Hermite polynomials arising from umbral calculus to have alternative ways ...
Dolgy, Dmitry v. +3 more
core
Enhancing geotechnical survey accuracy: Integrating intermediate soil properties (ISP) interpolation with multidimensional raster data (MRD) for comprehensive subsurface characterization and improved project efficiency. ABSTRACT Accurate subsurface characterization is essential in geotechnical surveys, yet traditional soil sampling techniques often ...
Aliya Aldungarova +9 more
wiley +1 more source
Parallel computing aided analyses of dynamic buckling for railway track infrastructure
Abstract This paper presents a scalable parallel computing framework for simulating track buckling under dynamic train loads, enabling large‐scale railway track stability analysis. A three‐dimensional (3D) track model is developed using finite element‐based Euler–Bernoulli beam formulations for rails, dynamic force inputs, and nonlinear interactions at
Dan Agustin +4 more
wiley +1 more source
The Zagier modification of Bernoulli numbers and a polynomial extension. Part I [PDF]
The modified B_{n}^{*} = \sum_{r=0}^{n} \binom{n+r}{2r} \frac{B_{r}}{n+r}, \quad n > 0 introduced by D. Zagier in 1998 are extended to the polynomial case by replacing $B_{r}$ by the Bernoulli polynomials $B_{r}(x)$.
Dixit, Atul +2 more
core

