Results 11 to 20 of about 564,269 (235)
Degenerate Bernstein polynomials [PDF]
9
Kim, Taekyun, Kim, Dae San
openaire +3 more sources
A Computational Model for q-Bernstein Quasi-Minimal Bézier Surface
A computational model is presented to find the q-Bernstein quasi-minimal Bézier surfaces as the extremal of Dirichlet functional, and the Bézier surfaces are used quite frequently in the literature of computer science for computer graphics and the ...
Daud Ahmad +5 more
doaj +1 more source
SMIRNOV’S INEQUALITY FOR POLYNOMIALS HAVING ZEROS OUTSIDE THE UNIT DISC
In 1887, the famous chemist D. I. Mendeleev posed the following problem: to estimate |𝑓 ′(𝑥)| for a real polynomial 𝑓 (𝑥), satisfying the condition |𝑓 (𝑥)| ≤ 𝑀 on [𝑎, 𝑏]. This question arose when Mendeleev was studying aqueous solutions.
E. G. Kompaneet, V. V. Starkov
doaj +1 more source
Direct Algorithm for Bernstein Enclosure Boundary of Polynomials
Multivariate polynomials of finite degree can be expanded into Bernstein form over a given simplex domain. The minimum and maximum Bernstein control points optimize the polynomial curve over the same domain.
Tareq Hamadneh +3 more
doaj +1 more source
Numerical solution of the first order nonlinear differen-tial equations with the mixed nonlinear conditions by using PLSM(comparison with Bernstein polynomials method) [PDF]
We use the Polynomial Least Squares Method (PLSM), which allows us to compute analytical approximate polynomial solutions for nonlinear ordinary differential equations with the mixed nonlinear conditions.
Lăpădat Marioara +2 more
doaj +1 more source
On some inequalities for derivatives of algebraic polynomials in unbounded regions with angles
In this work we study Bernstein-Walsh-type estimations for the derivative of an arbitrary algebraic polynomial in regions with interior zero and exterior non zero angles.
Cevahir Doğanay Gün
doaj +1 more source
Bernstein-Walsh type inequalities for derivatives of algebraic polynomials in quasidisks
In this paper, we study Bernstein-Walsh type estimates for the higher-order derivatives of an arbitrary algebraic polynomial on quasidisks.
Abdullayev Fahreddin G.
doaj +1 more source
REFINEMENT OF SOME BERNSTEIN TYPE INEQUALITIES FOR RATIONAL FUNCTIONS
In this paper, we establish some Bernstein-type inequalities for rational functions with prescribed poles. These results refine prior inequalities on rational functions and strengthen many well-known polynomial inequalities.
Idrees Qasim
doaj +1 more source
Bernstein polynomial model for nonparametric multivariate density [PDF]
In this paper, we study the Bernstein polynomial model for estimating the multivariate distribution functions and densities with bounded support. As a mixture model of multivariate beta distributions, the maximum (approximate) likelihood estimate can be ...
Tao Wang, Zhong Guan
semanticscholar +1 more source
Bernstein polynomials (aka, B-polys) have excellent properties allowing them to be used as basis functions in many applications of physics. In this paper, a brief tutorial description of their properties is given and then their use in obtaining B-polys, B-splines or Basis spline functions, Bezier curves and ODE solution curves, is computationally ...
openaire +1 more source

