Results 81 to 90 of about 10,442 (263)

Flux‐Regulated Crystallization of Perovskites Using Machine Learning‐Predicted Solvent Evaporation Rates for X‐Ray Detectors

open access: yesAdvanced Functional Materials, EarlyView.
By integrating machine learning into flux‐regulated crystallization (FRC), accurate prediction of solvent evaporation rates in real time, improving crystallization control and reducing crystal growth variability by over threefold, is achieved. This enhances the reproducibility and quality of perovskite single crystals, leading to reproducible ...
Tatiane Pretto   +8 more
wiley   +1 more source

Patterning the Void: Combining L‐Systems with Archimedean Tessellations as a Perspective for Tissue Engineering Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
This study introduces a novel multi‐scale scaffold design using L‐fractals arranged in Archimedean tessellations for tissue regeneration. Despite similar porosity, tiles display vastly different tensile responses (1–100 MPa) and deformation modes. In vitro experiments with hMSCs show geometry‐dependent growth and activity. Over 55 000 tile combinations
Maria Kalogeropoulou   +4 more
wiley   +1 more source

CO2 Reduction on Copper‐Nitrogen‐Doped Carbon Catalysts Tuned by Pulsed Potential Electrolysis: Effect of Pulse Potential

open access: yesAdvanced Functional Materials, EarlyView.
This study demonstrates that pulsed potential electrolysis significantly improves CO2 reduction performance on copper‐nitrogen doped carbon electrodes. The formation of cationic copper sites and metallic clusters as a function of applied intermittent potential leads to notable selectivity changes compared to potentiostatic reduction.
Dorottya Hursán   +13 more
wiley   +1 more source

Transparent Inorganic–Organic Bilayer Neural Electrode Array and Integration to Miniscope System for In Vivo Calcium Imaging and Electrophysiology

open access: yesAdvanced Functional Materials, EarlyView.
This study presents the BioCLEAR system, a highly transparent and conductive neural electrode array composed of silver nanowires (AgNWs) and doped PEDOT:PSS, enabling neural recordings with minimal optical artifacts. When integrated with a GRIN lens, this cost‐effective neural implant allows simultaneous electrophysiological recording and GCaMP6‐based ...
Dongjun Han   +17 more
wiley   +1 more source

Boosting the Energy Density of “Anode‐Free” Lithium Metal Batteries via Electrospun Polymeric Scaffolds

open access: yesAdvanced Functional Materials, EarlyView.
While host structures are known to enhance the reversibility and safety of lithium metal deposition, their additional volume and weight often decrease the battery's energy density and specific energy. By combining a lightweight and porous scaffold of electrospun polymer with a thinner separator, this article demonstrates a simultaneous improvement of ...
Lennart Wichmann   +6 more
wiley   +1 more source

A Peptide Nucleic Acid‐Functionalized Heterojunction Thin Film Transistor as a Scalable and Reusable Platform for Label‐Free Detection of MicroRNA

open access: yesAdvanced Functional Materials, EarlyView.
A miniaturized, label‐free, and enzyme‐free biosensor (miR‐TFT) enables direct electrical detection of microRNA (miRNA) with single‐nucleotide specificity and a detection limit of 0.6 fM. Built on a tri‐channel In2O3/ZnO heterojunction and functionalized with bespoke peptide nucleic acid (PNA) probes, the device is robust, reusable, and compatible with
Wejdan S. Al Ghamdi   +5 more
wiley   +1 more source

Microporous Microgel Assemblies Facilitating the Recruitment and Osteogenic Differentiation of Progenitor Cells for Bone Regeneration

open access: yesAdvanced Functional Materials, EarlyView.
There is a significant need for biomaterials with well‐defined stability and bioactivity to support tissue regeneration. In this study, we developed a tunable microgel platform that enables the decoupling of stiffness from porosity, thereby promoting bone regeneration.
Silvia Pravato   +9 more
wiley   +1 more source

Harnessing Non‐Covalent Protein–Protein Interaction Domains for Production of Biocatalytic Materials Systems

open access: yesAdvanced Functional Materials, EarlyView.
Non‐covalent protein–protein interactions mediated by SH3, PDZ, or GBD domains enable the self‐assembly of stable and biocatalytically active hydrogel materials. These soft materials can be processed into monodisperse foams that, once dried, exhibit enhanced mechanical stability and activity and are easily integrated into microstructured flow ...
Julian S. Hertel   +5 more
wiley   +1 more source

Unleashing the Power of Machine Learning in Nanomedicine Formulation Development

open access: yesAdvanced Functional Materials, EarlyView.
A random forest machine learning model is able to make predictions on nanoparticle attributes of different nanomedicines (i.e. lipid nanoparticles, liposomes, or PLGA nanoparticles) based on microfluidic formulation parameters. Machine learning models are based on a database of nanoparticle formulations, and models are able to generate unique solutions
Thomas L. Moore   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy