Results 131 to 140 of about 566,670 (285)

Elucidating Sodium Ion Storage Mechanisms in Hard Carbon Anodes at the Electronic Level

open access: yesAdvanced Functional Materials, EarlyView.
High‐resolution, multi‐frequency continuous wave, and pulsed Electron Paramagnetic Resonance (EPR) spectroscopy uncover the intricate Na ion storage mechanisms in hard carbon. This study reveals the coexistence of Na ion intercalation and solvent co‐intercalation, alongside a subsequent transition of Na ions from ionic to quasi‐metallic to metallic ...
Qingbing Xia   +5 more
wiley   +1 more source

COMP2PSYCH - Binary Number Representations

open access: yes, 2018
This presentation is part of the COMP2PSYCH seminar "Foundations of Computing".
openaire   +1 more source

Scaling‐Up of Structural Superlubricity: Challenges and Opportunities

open access: yesAdvanced Functional Materials, EarlyView.
At increasing length‐scales, structural superlubricity (SSL) faces challenges from physical and chemical energy dissipation pathways. This study reviews recent experimental and theoretical progress on these challenges facing the scaling‐up of SSL, as well as perspectives on future directions for realizing and manipulating macroscale superlubricity ...
Penghua Ying   +4 more
wiley   +1 more source

Over 18% Efficiency from Halogen‐Free Solvent‐Processed Polymer Solar Cells Enabled by Asymmetric Small Molecule Acceptors with Fluoro‐Thienyl Extended Terminal

open access: yesAdvanced Functional Materials, EarlyView.
An asymmetric non‐fullerene acceptor BTP‐FT is developed by extending the end group of Y6‐BO with thiophene. The conformation of the molecule is determined by the noncovalent F···S interaction as demonstrated by 2D NMR and simulations. An efficiency of 18.39% is achieved in the resulting ternary solar cells processed from toluene.
Jingnan Wu   +14 more
wiley   +1 more source

Exploring Electronic States and Ultrafast Electron Dynamics in AlInP Window Layers: The Role of Surface Reconstruction

open access: yesAdvanced Functional Materials, EarlyView.
This study examines the surface characteristics of AlInP (001), crucial for advanced solar cells and photoelectrochemical devices. Using theoretical modeling and experiments, it identifies how phosphorus‐rich and indium‐rich surfaces create mid‐gap states that pin the Fermi level and influence ultrafast electron dynamics.
Mohammad Amin Zare Pour   +11 more
wiley   +1 more source

Home - About - Disclaimer - Privacy