Results 1 to 10 of about 1,168 (116)
Some properties of extended remainder of binet’s first formula for logarithm of gamma function [PDF]
In the paper, we extend Binet's first formula for the logarithm of the gamma function and investigate some properties, including inequalities, star-shaped and sub-additive properties and the complete monotonicity, of the extended remainder of Binet's ...
Feng Qi, Bai-Ni Guo
openalex +3 more sources
Quadratic Approximation of Generalized Tribonacci Sequences
In this paper, we give quadratic approximation of generalized Tribonacci sequence {Vn}n≥0 defined by Vn = rVn−1 + sV n−2 + tV n−3 (n ≥ 3) and use this result to give the matrix form of the n-th power of a companion matrix of {Vn}n≥0. Then we re-prove the
Cerda-Morales Gamaliel
doaj +2 more sources
Binet’s formula for operator-valued recursive sequences and the operator moment problem
We derive a Binet-type formula for operator-valued sequences satisfying linear recurrence relations, extending the classical scalar case to the setting of bounded operators on Hilbert spaces.
A. Ech-charyfy +3 more
doaj +3 more sources
Elliptic curve and k-Fibonacci-like sequence
In this paper, we will introduce a modified k-Fibonacci-like sequence defined on an elliptic curve and prove Binet’s formula for this sequence. Moreover, we give a new encryption scheme using this sequence.
Zakariae Cheddour +2 more
doaj +1 more source
Binet's second formula, Hermite's generalization, and two related identities
Legendre was the first to evaluate two well-known integrals involving sines and exponentials. One of these integrals can be used to prove Binet’s second formula for the logarithm of the gamma function.
Boyack Rufus
doaj +1 more source
Hybrid Quaternions of Leonardo
In this article, we intend to investigate the Leonardo sequence presenting the hybrid Leonardo quaternions. To explore Hybrid Quaternions of Leonardo, the priori, sequence of Leonardo, quaternions and hybrid numbers were presented.
M. C. S. Mangueira +2 more
doaj +1 more source
On Quaternion Gaussian Bronze Fibonacci Numbers
In the present work, a new sequence of quaternions related to the Gaussian Bronze numbers is defined and studied. Binet’s formula, generating function and certain properties and identities are provided.
Catarino Paula, Ricardo Sandra
doaj +1 more source
In this paper, dual Jacobsthal quaternions were defined. Also, the relations between dual Jacobsthal quaternions which connected with Jacobsthal and Jacobsthal-Lucas numbers were investigated. Furthermore, Binet's formula, Honsberger identity, D'ocagne'
Fügen Torunbalcı Aydın
doaj +1 more source
Some identities of bivariate Pell and bivariate Pell-Lucas polynomials
In this paper, we obtain some identities for the bivariate Pell polynomials and bivariate Pell-Lucas polynomials. We establish some sums and connection formulas involving them.
Yashwant Panwar
doaj +1 more source
Higher-Order Jacobsthal–Lucas Quaternions
In this work, we define higher-order Jacobsthal–Lucas quaternions with the help of higher-order Jacobsthal–Lucas numbers. We examine some identities of higher-order Jacobsthal–Lucas quaternions. We introduce their basic definitions and properties.
Mine Uysal, Engin Özkan
doaj +1 more source

