Results 231 to 240 of about 338,626 (337)

Iron/Cobalt Dual‐Atom Catalyst Orchestrate Photothermal‐Chemodynamic Immunotherapy Against MRSA: Multi‐Omics Dissection in Murine and Porcine Models

open access: yesAdvanced Science, EarlyView.
FeCo dual‐atom catalyst (FeCo‐N‐DAC) with ultrahigh metal loading (Fe > 5.4%, Co > 4.8%) is developed for synergistic photothermal‐chemodynamic immunotherapy. FeCo‐N‐DAC penetrates deep‐seated tissues, eradicates MRSA biofilms, and reprograms immune‐inflammatory pathways via multi‐omics‐validated mechanisms.
Shihao Xu   +11 more
wiley   +1 more source

Biofilm Formation in Clinical <i>Acinetobacter baumannii</i> Is Influenced by Isolate Source and Is Inversely Correlated With Antibiotic Resistance. [PDF]

open access: yesBiomed Res Int
Ababneh Q   +8 more
europepmc   +1 more source

Multifunctional Gelatin‐Based Smart Films Integrating Thermochromic Encryption, Temperature‐Regulated Photothermal Management, Reprocessability, and Biodegradability for Sustainable Applications

open access: yesAdvanced Science, EarlyView.
Multifunctional gelatin films synergizing thermochromic encryption, self‐regulating photothermal management, and closed‐loop recyclability offer sustainable solutions for intelligent packaging. ABSTRACT Multifunctional gelatin‐based smart films are engineered by incorporating hyperbranched polyglycerol (HBPG) as a plasticizer, dialdehyde β‐cyclodextrin
Yuehong Zhang   +4 more
wiley   +1 more source

Precise Construction of an Antimicrobial Peptide Targeting Bacterial Cell Membranes Derived From Natural Peptides

open access: yesAdvanced Science, EarlyView.
An AMP (P 3‐3R‐8I) based on natural peptides, which can target bacterial cell membranes, was precisely constructed via amino acid mutation. P 3‐3R‐8I exhibits antibacterial capability which could be attributed to the ability of P 3‐3R‐8I to quickly penetrate bacterial cell membranes and then to bind to bacterial DNA.
Jiaqi Huang   +11 more
wiley   +1 more source

Photothermal–Immunomodulatory Hydrogel Reinforced by Ti3C2/ZnAl‐LDH Nanoplatform for Eradicating MRSA and Promoting Diabetic Wound Healing

open access: yesAdvanced Science, EarlyView.
A NETs‐inspired Ti3C2/LDH hydrogel integrates trapping, ROS boosting, and M2‐immunomodulation for MRSA‐infected wound repair. ABSTRACT MRSA infections give rise to chronic cutaneous and advance into profound tissue invasions, including osteomyelitis and sepsis—conditions for which existing clinical interventions offer only limited efficacy. The utility
Qiang Shi   +6 more
wiley   +1 more source

Home - About - Disclaimer - Privacy