Results 111 to 120 of about 157,658 (286)

Towards PubMed 2.0

open access: yeseLife, 2017
Staff from the National Center for Biotechnology Information in the US describe recent improvements to the PubMed search engine and outline plans for the future, including a new experimental site called PubMed Labs.
Nicolas Fiorini   +2 more
doaj   +1 more source

Artificial Intelligence for Bone: Theory, Methods, and Applications

open access: yesAdvanced Intelligent Discovery, EarlyView.
Advances in artificial intelligence (AI) offer the potential to improve bone research. The current review explores the contributions of AI to pathological study, biomarker discovery, drug design, and clinical diagnosis and prognosis of bone diseases. We envision that AI‐driven methodologies will enable identifying novel targets for drugs discovery. The
Dongfeng Yuan   +3 more
wiley   +1 more source

Deep Learning‐Assisted Coherent Raman Scattering Microscopy

open access: yesAdvanced Intelligent Discovery, EarlyView.
The analytical capabilities of coherent Raman scattering microscopy are augmented through deep learning integration. This synergistic paradigm improves fundamental performance via denoising, deconvolution, and hyperspectral unmixing. Concurrently, it enhances downstream image analysis including subcellular localization, virtual staining, and clinical ...
Jianlin Liu   +4 more
wiley   +1 more source

Molecular Interactions. On the Ambiguity of Ordinary Statements in Biomedical Literature [PDF]

open access: yes, 2009
Statements about the behavior of biochemical entities (e.g., about the interaction between two proteins) abound in the literature on molecular biology and are increasingly becoming the targets of information extraction and text mining ...
Jansen, Ludger, Schulz, Stefan
core  

Deep Learning‐Assisted Design of Mechanical Metamaterials

open access: yesAdvanced Intelligent Discovery, EarlyView.
This review examines the role of data‐driven deep learning methodologies in advancing mechanical metamaterial design, focusing on the specific methodologies, applications, challenges, and outlooks of this field. Mechanical metamaterials (MMs), characterized by their extraordinary mechanical behaviors derived from architected microstructures, have ...
Zisheng Zong   +5 more
wiley   +1 more source

What the papers say: Text mining for genomics and systems biology

open access: yesHuman Genomics, 2010
Keeping up with the rapidly growing literature has become virtually impossible for most scientists. This can have dire consequences. First, we may waste research time and resources on reinventing the wheel simply because we can no longer maintain a ...
Harmston Nathan   +2 more
doaj   +1 more source

Accelerating Primary Screening of USP8 Inhibitors from Drug Repurposing Databases with Tree‐Based Machine Learning

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces a tree‐based machine learning approach to accelerate USP8 inhibitor discovery. The best‐performing model identified 100 high‐confidence repurposable compounds, half already approved or in clinical trials, and uncovered novel scaffolds not previously studied. These findings offer a solid foundation for rapid experimental follow‐up,
Yik Kwong Ng   +4 more
wiley   +1 more source

Concept annotation in the CRAFT corpus

open access: yesBMC Bioinformatics, 2012
Background Manually annotated corpora are critical for the training and evaluation of automated methods to identify concepts in biomedical text. Results This paper presents the concept annotations of the Colorado Richly Annotated Full-Text (CRAFT) Corpus,
Bada Michael   +10 more
doaj   +1 more source

Machine Learning‐Enhanced Random Matrix Theory Design for Human Immunodeficiency Virus Vaccine Development

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study integrates random matrix theory (RMT) and principal component analysis (PCA) to improve the identification of correlated regions in HIV protein sequences for vaccine design. PCA validation enhances the reliability of RMT‐derived correlations, particularly in small‐sample, high‐dimensional datasets, enabling more accurate detection of ...
Mariyam Siddiqah   +3 more
wiley   +1 more source

FIRE‐GNN: Force‐Informed, Relaxed Equivariance Graph Neural Network for Rapid and Accurate Prediction of Surface Properties

open access: yesAdvanced Intelligent Discovery, EarlyView.
This study introduces FIRE‐GNN, a force‐informed, relaxed equivariant graph neural network for predicting surface work functions and cleavage energies from slab structures. By incorporating surface‐normal symmetry breaking and machine learning interatomic potential‐derived force information, the approach achieves state‐of‐the‐art accuracy and enables ...
Circe Hsu   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy