Results 291 to 300 of about 10,254,786 (382)
Absolute blood volume and long-term survival in chronic hemodialysis patients. [PDF]
Kron J, Broszeit S, Leimbach T, Kron S.
europepmc +1 more source
openaire +1 more source
Electroactive Liquid Crystal Elastomers as Soft Actuators
Electroactive liquid crystal elastomers (eLCEs) can be actuated via electromechanical, electrochemical, or electrothermal effects. a) Electromechanical effects include Maxwell stress, electrostriction, and the electroclinic effect. b) Electrochemical effects arise from electrode redox reactions.
Yakui Deng, Min‐Hui Li
wiley +1 more source
The Influence of Blood Transfusion Indexed to Patient Blood Volume on 5-Year Mortality After Coronary Artery Bypass Grafting-An EuroSCORE II Adjusted Spline Regression Analysis. [PDF]
Kletzer J +10 more
europepmc +1 more source
Bioinspired bromination of a resilin‐derived peptide enables the fabrication of electrospun nanofibrous scaffolds that uniquely combine strain‐stiffening elasticity, proteolytic stability, and antioxidant functionality. These brominated peptide–gelatin hybrids mimic the extensibility of natural elastomers, demonstrating tunable mechanical resilience ...
Elisa Marelli +6 more
wiley +1 more source
Magnitude and precision of absolute blood volume estimated during hemodialysis. [PDF]
Abohtyra R, Vincent T, Schneditz D.
europepmc +1 more source
Electrosynthesis of Bioactive Chemicals, From Ions to Pharmaceuticals
This review discusses recent advances in electrosynthesis for biomedical and pharmaceutical applications. It covers key electrochemical materials enabling precise delivery of ions and small molecules for cellular modulation and disease treatment, alongside catalytic systems for pharmaceutical synthesis.
Gwangbin Lee +4 more
wiley +1 more source
Editorial: Transfusion medicine and blood, volume II. [PDF]
Maitta RW +4 more
europepmc +1 more source
Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley +1 more source

