Results 231 to 240 of about 2,041,624 (304)

Coagulative Granular Hydrogels with an Enzyme Catalyzed Fibrin Network for Endogenous Tissue Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
Coagulative granular hydrogels are composed of packed thrombin‐functionalized microgels that catalyze the conversion of fibrinogen into a secondary fibrin network, filling the interstitial voids. This bio‐inspired approach stabilizes the biomaterial to match the robustness of bulk hydrogels without compromising injectability, mimicking the initial ...
Zhipeng Deng   +16 more
wiley   +1 more source

A Novel Sprayable Fibrinogen/Glycosaminoglycans/Collagen‐Based Bioink for Skin Wound Healing Applied by a Handheld Dual‐Head Airbrush

open access: yesAdvanced Healthcare Materials, EarlyView.
A dual‐head airbrush‐based spraying device, combined with a fibrinogen bioink enriched with glycosaminoglycans and collagen, enables the delivery of biomaterials and cells to promote wound healing. This system demonstrates effective skin regeneration in vitro and in vivo, with comparable results to autografts.
Paula Pleguezuelos‐Beltrán   +7 more
wiley   +1 more source

A Computational Journey Toward an Optimal Design for Metamaterial Epicardial Passive Sleeves

open access: yesAdvanced Healthcare Materials, EarlyView.
Passive epicardial sleeves are evaluated in 3D in‐silico heart models to reveal how sleeve geometry, stiffness, anisotropy, and metamaterial architecture influence cardiac mechanics after myocardial infarction. A continuum‐to‐auxetic design exploration shows that region‐specific mechanical engagement can reduce infarct bulging and modulate torsional ...
Vahid Naeini   +8 more
wiley   +1 more source

A Human Neural Tube Model Using 4D Self‐Folding Smart Scaffolds

open access: yesAdvanced Healthcare Materials, EarlyView.
Induced pluripotent stem cells (iPSCs) exhibit features comparable to the inner cell mass of the human embryo. iPSCs are applied to a novel self‐folding 4D‐Neural Tube (4D‐NT) structure that mimics the neurulation process. This 4D‐NT model recapitulates early events of human neural development and represents a platform to explore neurodevelopmental ...
Claudia Dell'Amico   +8 more
wiley   +1 more source

Physical connectedness and body height

open access: yes, 2014
Hermanussen, Michael   +3 more
openaire   +1 more source

Ultrasound‐Triggered Gelation for Restoring Biomechanical Properties of Degenerated Functional Spinal Units

open access: yesAdvanced Healthcare Materials, EarlyView.
This study introduces an innovative approach to treating intervertebral disc degeneration using ultrasound‐triggered in situ hydrogel formation. Proof‐of‐concept experiments using optimized biomaterial and ultrasound parameters demonstrate partial restoration of biomechanical function and successful integration into degenerated disc tissue, offering a ...
Veerle A. Brans   +11 more
wiley   +1 more source

Co‐Electrospinning Extracellular Matrix with Polycaprolactone Enables a Modular Approach to Balance Bioactivity and Mechanics of a Multifunctional Bone Wrap

open access: yesAdvanced Healthcare Materials, EarlyView.
The incorporation of nondigested ECM and synthetic polymers into a co‐electrospinning system enables the decoupling of bioactivity and mechanical properties within a single wrap. This technique is used to develop a multifunctional bone wrap that achieves augmented membrane durability, sustained infection control, and enhanced vascularity for use in ...
Sarah Jones   +14 more
wiley   +1 more source

Novel 3D‐Printed Biophotonic Scaffold Displaying Luminescence under Near‐Infrared Light for Photopharmacological Activation and Biological Signaling Compound Release

open access: yesAdvanced Healthcare Materials, EarlyView.
Despite significant efforts in developing novel biomaterials to regenerate tissue, only a few of them have successfully reached clinical use. It has become clear that the next generation of biomaterials must be multifunctional. Smart biomaterials can respond to environmental or external stimuli, interact in a spatial‐temporal manner, and trigger ...
Sonya Ghanavati   +12 more
wiley   +1 more source

Multiscale Hybrid Surface Topographies Orchestrate Immune Regulation, Antibacterial Defense, and Tissue Regeneration

open access: yesAdvanced Healthcare Materials, EarlyView.
Hybrid wrinkled topographies coordinate immune, tissue, and bacterial interactions. The surfaces promote osteointegration, tune macrophage polarization, and inhibit biofilm formation, highlighting a multifunctional strategy for next‐generation implant design.
Mohammad Asadi Tokmedash   +4 more
wiley   +1 more source

[Body height and disease].

open access: yesTidsskrift for den Norske laegeforening : tidsskrift for praktisk medicin, ny raekke, 1999
openaire   +1 more source

Home - About - Disclaimer - Privacy