Results 231 to 240 of about 369,836 (314)

Biofilm‐Antagonist Ginger‐Based 3D‐Printable Photoresins for Complex Implant Designs Exhibiting Advanced Multifunctional Biomedical Applications

open access: yesAdvanced Materials, EarlyView.
This work offers unique Ginger‐based 3D‐printable resins that can print customizable high‐resolution complex designs. The customizable printing backbone of Zingerol prints also mimics various human bones' strength. Acquisition of in‐vivo biocompatibility in rat model with no severe inflammatory response, along with in‐vitro antioxidant and ex‐vivo anti‐
Simran Jindal   +9 more
wiley   +1 more source

A Water‐Soluble PVA Macrothiol Enables Two‐Photon Microfabrication of Cell‐Interactive Hydrogel Structures at 400 mm s−1

open access: yesAdvanced Materials, EarlyView.
A PVA‐based macromolecular thiol‐ene formulation enables efficient two‐photon polymerization at extremely low polymer concentrations and high writing speeds of 400 mm s−1 (20×), allowing high‐fidelity laser writing of cell‐interactive hydrogel structures on demand.
Wanwan Qiu   +6 more
wiley   +1 more source

Polyphenols, aging, and health: What can we expect from the food industry in the technology era? [PDF]

open access: yesFront Med (Lausanne)
Numa IAN   +6 more
europepmc   +1 more source

Mesoporous Silica Nanoparticles in Biomedicine: Advances and Prospects

open access: yesAdvanced Materials, EarlyView.
Mesoporous silica nanoparticles offer unique properties like high surface area, tunable pores, and functionalization. They excel in drug delivery, tissue engineering, and stimuli‐responsive therapies, enabling targeted and controlled treatments. With roles in cancer therapy and diagnostics, their clinical translation requires addressing challenges in ...
Miguel Manzano, María Vallet‐Regí
wiley   +1 more source

Mesenchymal Stem Cell‐Inspired Microneedle Platform for NIR‐responsive Immunomodulation and Accelerated Chronic Wound Healing

open access: yesAdvanced Materials, EarlyView.
The research demonstrates a Mesenchymal Stem Cell‐inspired microneedle platform (MSCi@MN) that addresses chronic diabetic wounds by combining MSC‐derived extracellular nanovesicles (NV)–DNA conjugates in microneedle tips with photothermal MXene in the patch layer.
Chan Ho Moon   +21 more
wiley   +1 more source

Home - About - Disclaimer - Privacy