Results 271 to 280 of about 347,614 (356)

Modulating Integrin and Growth Factor Signaling With Peptides: Strategies to Synergistically Enhance Bone Tissue Regeneration

open access: yesAdvanced Science, EarlyView.
It has been demonstrated that, in the bone extracellular matrix (ECM), integrins and growth factor receptors (GFRs) engage in synergistic signaling to guide bone healing and regeneration. This review provides a comprehensive overview of current strategies using ECM‐derived peptides to recreate the cellular microenvironment and harness synergistic ...
Lluís Oliver‐Cervelló   +2 more
wiley   +1 more source

Mendelian Randomization and Double Machine Learning Modeling Reveal Brain Imaging‐Derived Phenotypes as Functional Contributors to 18 Autoimmune Inflammatory Diseases

open access: yesAdvanced Science, EarlyView.
This schematic integrates the eight statistically significant causal relationships identified between 1,366 brain imaging‐derived phenotypes (IDPs) and 18 autoimmune inflammatory diseases (AIDs). Arrows indicate the direction of causality inferred from bidirectional two‐sample MR analyses.
Jinbin Chen   +8 more
wiley   +1 more source

Elevator‐Like Hollow Channels in Porous Scaffolds Accelerate Vascularized Bone Regeneration via NETs‐Fibrin‐Mediated Macrophage Recruitment

open access: yesAdvanced Science, EarlyView.
This study demonstrates that how hollow‐channel scaffolds promote vascularized bone regeneration via an immunomodulatory mechanism. The channel structures facilitate the formation of a neutrophil extracellular traps‐fibrin scaffold that recruits vascular endothelial growth factor A (VEGF‐A)‐secreting M2 macrophages to drive angiogenesis. Combining this
Guifang Wang   +8 more
wiley   +1 more source

Osteoclast‐Derived SLIT3 Mediates Osteoarthritis Pain and Degenerative Changes

open access: yesAdvanced Science, EarlyView.
In TMJ‐OA, osteoclasts play a significant role in promoting the growth of sensory nerves at the osteochondral interface. In early OA, TRAP+ osteoclast‐derived SLIT3 induces sensory nerve growth into the condylar cartilage. This nerve growth facilitates the development of pain associated with OA.
Weiwei Zhu   +13 more
wiley   +1 more source

Home - About - Disclaimer - Privacy