Results 221 to 230 of about 22,118,555 (377)
CBMR: Coordinate-based meta-regression for group and covariate inference. [PDF]
Yu Y +5 more
europepmc +1 more source
Combining machine learning and probabilistic statistical learning is a powerful way to discover and design new materials. A variety of machine learning approaches can be used to identify promising candidates for target applications, and causal inference can help identify potential ways to make them a reality.
Jonathan Y. C. Ting, Amanda S. Barnard
wiley +1 more source
Candidate genes for anthracnose resistance in Senegalese sorghum: a machine learning-based exploration. [PDF]
Ahn E +6 more
europepmc +1 more source
A bootstrap test for single index models [PDF]
Wolfgang Karl Härdle +2 more
openalex +1 more source
Machine learning predicts activation energies for key steps in the water‐gas shift reaction on 92 MXenes. Random Forest is identified as the most accurate model. Reaction energy and reactant LogP emerge as key descriptors. The approach provides a predictive framework for catalyst design, grounded in density functional theory data and validated through ...
Kais Iben Nassar +3 more
wiley +1 more source
A practice-oriented guide to statistical inference in linear modeling for non-normal or heteroskedastic error distributions. [PDF]
Rajh-Weber H, Huber SE, Arendasy M.
europepmc +1 more source
Topology‐Aware Machine Learning for High‐Throughput Screening of MOFs in C8 Aromatic Separation
We screened 15,335 Computation‐Ready, Experimental Metal–Organic Frameworks (CoRE‐MOFs) using a topology‐aware machine learning (ML) model that integrates structural, chemical, pore‐size, and topological descriptors. Top‐performing MOFs exhibit aromatic‐enriched cavities and open metal sites that enable π–π and C–H···π interactions, serving as ...
Yu Li, Honglin Li, Jialu Li, Wan‐Lu Li
wiley +1 more source
Bootstrapping unobserved component models
En esta tesis, proponemos el uso de técnicas bootstrap para incorporar la incertidumbre de la estimación de los parámetros en modelos de componentes inobservados expresado en un contexto de modelos de espacio de los estados. A lo largo de los capítulos usamos simulaciones Monte Carlo y datos reales para mostrar los resultados de los procedimientos ...
openaire +2 more sources
TAN-FGBMLE: Tree-Augmented Naive Bayes Structure Learning Based on Fast Generative Bootstrap Maximum Likelihood Estimation for Continuous-Variable Classification. [PDF]
Wei C, Zhang T, Li C, Wang P, Ye Z.
europepmc +1 more source
This work introduces a novel framework for identifying non‐small cell lung cancer biomarkers from hundreds of volatile organic compounds in breath, analyzed via gas chromatography‐mass spectrometry. This method integrates generative data augmentation and multi‐view feature selection, providing a stable and accurate solution for biomarker discovery in ...
Guancheng Ren +10 more
wiley +1 more source

