Results 51 to 60 of about 6,622 (234)
Middle‐Atmosphere Dynamics Observed With a Portable Muon Detector
Earth and Space Science, Volume 6, Issue 10, Page 1865-1876, October 2019., 2019 Abstract
In the past years, large particle physics experiments have shown that muon rate variations detected in underground laboratories are sensitive to regional, middle‐atmosphere temperature variations. Potential applications include tracking short‐term atmosphere dynamics, such as Sudden Stratospheric Warmings.M. Tramontini, M. Rosas‐Carbajal, C. Nussbaum, D. Gibert, J. Marteau +4 morewiley +1 more sourceSupernova neutrino detection in Borexino [PDF]
Astroparticle Physics, 2002 We calculated the expected neutrino signal in Borexino from a typical Type II supernova at a distance of 10 kpc. A burst of around 110 events would appear in Borexino within a time interval of about 10 s. Most of these events would come from the reaction channel $\bar _e+p\to e^++n$, while about 30 events would be induced by the interaction of the ...Cadonati, L., Calaprice, F. P., Chen, M. C. +2 moreopenaire +2 more sourcesNovel Neutrino‐Floor and Dark Matter Searches with Deformed Shell Model Calculations
Advances in High Energy Physics, Volume 2018, Issue 1, 2018., 2018 Event detection rates for WIMP‐nucleus interactions are calculated for 71Ga, 73Ge, 75As, and 127I (direct dark matter detectors). The nuclear structure form factors, which are rather independent of the underlying beyond the Standard Model particle physics scenario assumed, are evaluated within the context of the deformed nuclear shell model (DSM) based D. K. Papoulias, R. Sahu, T. S. Kosmas, V. K. B. Kota, B. Nayak, Enrico Lunghi +5 morewiley +1 more sourceCurrent Status and Future Prospects of the SNO+ Experiment
Advances in High Energy Physics, Volume 2016, Issue 1, 2016., 2016 SNO+ is a large liquid scintillator‐based experiment located 2 km underground at SNOLAB, Sudbury, Canada. It reuses the Sudbury Neutrino Observatory detector, consisting of a 12 m diameter acrylic vessel which will be filled with about 780 tonnes of ultra‐pure liquid scintillator. Designed as a multipurpose neutrino experiment, the primary goal of SNO+ S. Andringa, E. Arushanova, S. Asahi, M. Askins, D. J. Auty, A. R. Back, Z. Barnard, N. Barros, E. W. Beier, A. Bialek, S. D. Biller, E. Blucher, R. Bonventre, D. Braid, E. Caden, E. Callaghan, J. Caravaca, J. Carvalho, L. Cavalli, D. Chauhan, M. Chen, O. Chkvorets, K. Clark, B. Cleveland, I. T. Coulter, D. Cressy, X. Dai, C. Darrach, B. Davis-Purcell, R. Deen, M. M. Depatie, F. Descamps, F. Di Lodovico, N. Duhaime, F. Duncan, J. Dunger, E. Falk, N. Fatemighomi, R. Ford, P. Gorel, C. Grant, S. Grullon, E. Guillian, A. L. Hallin, D. Hallman, S. Hans, J. Hartnell, P. Harvey, M. Hedayatipour, W. J. Heintzelman, R. L. Helmer, B. Hreljac, J. Hu, T. Iida, C. M. Jackson, N. A. Jelley, C. Jillings, C. Jones, P. G. Jones, K. Kamdin, T. Kaptanoglu, J. Kaspar, P. Keener, P. Khaghani, L. Kippenbrock, J. R. Klein, R. Knapik, J. N. Kofron, L. L. Kormos, S. Korte, C. Kraus, C. B. Krauss, K. Labe, I. Lam, C. Lan, B. J. Land, S. Langrock, A. LaTorre, I. Lawson, G. M. Lefeuvre, E. J. Leming, J. Lidgard, X. Liu, Y. Liu, V. Lozza, S. Maguire, A. Maio, K. Majumdar, S. Manecki, J. Maneira, E. Marzec, A. Mastbaum, N. McCauley, A. B. McDonald, J. E. McMillan, P. Mekarski, C. Miller, Y. Mohan, E. Mony, M. J. Mottram, V. Novikov, H. M. O’Keeffe, E. O’Sullivan, G. D. Orebi Gann, M. J. Parnell, S. J. M. Peeters, T. Pershing, Z. Petriw, G. Prior, J. C. Prouty, S. Quirk, A. Reichold, A. Robertson, J. Rose, R. Rosero, P. M. Rost, J. Rumleskie, M. A. Schumaker, M. H. Schwendener, D. Scislowski, J. Secrest, M. Seddighin, L. Segui, S. Seibert, T. Shantz, T. M. Shokair, L. Sibley, J. R. Sinclair, K. Singh, P. Skensved, A. Sörensen, T. Sonley, R. Stainforth, M. Strait, M. I. Stringer, R. Svoboda, J. Tatar, L. Tian, N. Tolich, J. Tseng, H. W. C. Tseung, R. Van Berg, E. Vázquez-Jáuregui, C. Virtue, B. von Krosigk, J. M. G. Walker, M. Walker, O. Wasalski, J. Waterfield, R. F. White, J. R. Wilson, T. J. Winchester, A. Wright, M. Yeh, T. Zhao, K. Zuber, Vincenzo Flaminio +156 morewiley +1 more sourceTheoretical and Phenomenological Status of Neutrino Physics: A Brief Review
Advances in High Energy Physics, Volume 2015, Issue 1, 2015., 2015 We present an overview of recent progress in the theoretical and phenomenological studies of neutrino masses, lepton avor mixing, and CP violation. Firstly, We discuss the status of neutrino mass with in the Standard Model (SM) of particle physics. Then the possible ways in which neutrino mass terms can be included in the SM are discussed.Surender Verma, Elias C. Vagenaswiley +1 more sourceThe DarkSide Multiton Detector for the Direct Dark Matter Search
Advances in High Energy Physics, Volume 2015, Issue 1, 2015., 2015 Although the existence of dark matter is supported by many evidences, based on astrophysical measurements, its nature is still completely unknown. One major candidate is represented by weakly interacting massive particles (WIMPs), which could in principle be detected through their collisions with ordinary nuclei in a sensitive target, producing ...C. E. Aalseth, P. Agnes, A. Alton, K. Arisaka, D. M. Asner, H. O. Back, B. Baldin, K. Biery, G. Bonfini, M. Bossa, A. Brigatti, J. Brodsky, F. Budano, L. Cadonati, M. Cadoni, F. Calaprice, N. Canci, A. Candela, H. Cao, M. Cariello, P. Cavalcante, A. Chepurnov, A. G. Cocco, C. Condon, L. Crippa, D. D’Angelo, M. D’Incecco, S. Davini, M. De Deo, A. Derbin, A. Devoto, F. Di Eusanio, E. Edkins, A. Empl, A. Fan, G. Fiorillo, K. Fomenko, G. Forster, M. Foxe, D. Franco, F. Gabriele, C. Galbiati, A. Goretti, L. Grandi, M. Gromov, M. Y. Guan, Y. Guardincerri, B. Hackett, K. Herner, A. Hime, P. Humble, E. Hungerford, Al. Ianni, An. Ianni, D. E. Jaffe, C. Jollet, K. Keeter, C. Kendziora, S. Kidner, V. Kobychev, G. Koh, D. Korablev, G. Korga, A. Kurlej, P. X. Li, M. Lissia, P. Lombardi, L. Ludhova, S. Luitz, G. Lukyachenko, Y. Q. Ma, I. Machulin, A. Mandarano, S. M. Mari, J. Maricic, L. Marini, D. Markov, J. Martoff, A. Meregaglia, E. Meroni, P. D. Meyers, T. Miletic, R. Milincic, M. Montuschi, M. E. Monzani, P. Mosteiro, B. Mount, V. Muratova, P. Musico, D. Montanari, A. Nelson, S. Odrowski, A. Odrzywolek, J. L. Orrell, M. Orsini, F. Ortica, L. Pagani, M. Pallavicini, E. Pantic, S. Parmeggiano, B. Parsells, K. Pelczar, N. Pelliccia, S. Perasso, L. Perasso, A. Pocar, S. Pordes, D. Pugachev, H. Qian, K. Randle, G. Ranucci, A. Razeto, K. Recine, B. Reinhold, A. Renshaw, A. Romani, N. Rossi, B. Rossi, S. D. Rountree, D. Sablone, P. Saggese, R. Saldanha, W. Sands, S. Sangiorgio, E. Segreto, D. Semenov, E. Shields, M. Skorokhvatov, M. Smallcomb, O. Smirnov, A. Sotnikov, Y. Suvurov, R. Tartaglia, J. Tatarowicz, G. Testera, A. Tonazzo, E. Unzhakov, R. B. Vogelaar, M. Wada, S. E. Walker, H. Wang, Y. Wang, A. W. Watson, S. Westerdale, R. Williams, M. Wojcik, J. Xu, C. G. Yang, J. Yoo, B. Yu, S. Zavatarelli, W. L. Zhong, G. Zuzel, Marcello Messina +153 morewiley +1 more sourceSolar Neutrinos Spectroscopy with Borexino Phase-II
Universe, 2018 Solar neutrinos have played a central role in the discovery of the neutrino oscillation mechanism. They still are proving to be a unique tool to help investigate the fusion reactions that power stars and further probe basic neutrino properties.Lino Miramonti, Matteo Agostini, Konrad Altenmueller, Simon Appel, Victor Atroshchenko, Zara Bagdasarian, Davide Basilico, Gianpaolo Bellini, Jay Benziger, Daniel Bick, Irene Bolognino, Giuseppe Bonfini, David Bravo, Barbara Caccianiga, Frank Calaprice, Alessio Caminata, Silvia Caprioli, Marco Carlini, Paolo Cavalcante, Francesca Cavanna, Alexander Chepurnov, Koun Choi, Laura Collica, Stefano Davini, Alexander Derbin, XueFeng Ding, Antonio Di Ludovico, Lea Di Noto, Ilia Drachnev, Kirill Fomenko, Andrey Formozov, Davide Franco, Federico Gabriele, Cristiano Galbiati, Michael Gschwender, Chiara Ghiano, Marco Giammarchi, Augusto Goretti, Maxim Gromov, Daniele Guffanti, Caren Hagner, Thibaut Houdy, Ed Hungerford, Aldo Ianni, Andrea Ianni, Anna Jany, Dominik Jeschke, Vladislav Kobychev, Denis Korablev, Gyorgy Korga, Tobias Lachenmaier, Matthias Laubenstein, Evgeny Litvinovich, Francesco Lombardi, Paolo Lombardi, Livia Ludhova, Georgy Lukyanchenko, Liudmila Lukyanchenko, Igor Machulin, Giulio Manuzio, Simone Marcocci, Jelena Maricic, Johann Martyn, Emanuela Meroni, Mikko Meyer, Marcin Misiaszek, Valentina Muratova, Birgit Neumair, Lothar Oberauer, Bjoern Opitz, Vsevolod Orekhov, Fausto Ortica, Marco Pallavicini, Laszlo Papp, Omer Penek, Lidio Pietrofaccia, Nelly Pilipenko, Andrea Pocar, Alessio Porcelli, Georgy Raikov, Gioacchino Ranucci, Alessandro Razeto, Alessandra Re, Mariia Redchuk, Aldo Romani, Nicola Rossi, Sebastian Rottenanger, Stefan Schöenert, Dmitrii Semenov, Mikhail Skorokhvatov, Oleg Smirnov, Albert Sotnikov, Lee F. F. Stokes, Yura Suvorov, Roberto Tartaglia, Gemma Testera, Jan Thurn, Maria Toropova, Evgenii Unzhakov, Alina Vishneva, Bruce Vogelaar, Franz von Feilitzsch, Stefan Weinz, Marcin Wojcik, Michael Wurm, Zachary Yokley, Oleg Zaimidoroga, Sandra Zavatarelli, Kai Zuber, Grzegorz Zuzel +109 moredoaj +1 more sourceRecent Borexino results and prospects for the near future
EPJ Web of Conferences, 2016 The Borexino experiment located in the Gran Sasso National Laboratory, is an organic liquid scintillator detector conceived for the real time spectroscopy of low energy solar neutrinos.D’Angelo D., Agostini M., Altenmüller K., Appel S., Bellini G., Benziger J., Bick D., Bonfini G., Bravo D., Caccianiga B., Calaprice F., Caminata A., Cavalcante P., Chepurnov A., Davini S., Derbin A., Di Noto L., Drachnev I., Etenko A., Fomenko K., Franco D., Gabriele F., Galbiati C., Ghiano C., Giammarchi M., Goeger-Neff M., Goretti A., Gromov M., Hagner C., Hungerford E., Ianni Aldo, Ianni Andrea, Jedrzejczak K., Kaiser M., Kobychev V., Korablev D., Korga G., Kryn D., Laubenstein M., Lehnert B., Litvinovich E., Lombardi F., Lombardi P., Ludhova L., Lukyanchenko G., Machulin I., Manecki S., Maneschg W., Marcocci S., Meroni E., Meyer M., Miramonti L., Misiaszek M., Montuschi M., Mosteiro P., Muratova V., Neumair B., Oberauer L., Obolensky M., Ortica F., Pallavicini M., Papp L., Perasso L., Pocar A., Ranucci G., Razeto A., Re A., Romani A., Roncin R., Rossi N., Schönert S., Semenov D., Simgen H., Skorokhvatov M., Smirnov O., Sotnikov A., Sukhotin S., Suvorov Y., Tartaglia R., Testera G., Thurn J., Toropova M., Unzhakov E., Vishneva A., Vogelaar R.B., von Feilitzsch F., Wang H., Weinz S., Winter J., Wojcik M., Wurm M., Yokley Z., Zaimidoroga O., Zavatarelli S., Zuber K., Zuzel G. +95 moredoaj +1 more source