Results 211 to 220 of about 624,360 (350)

Affective temperaments and light preference. [PDF]

open access: yesFront Psychiatry
Hirakawa H   +4 more
europepmc   +1 more source

Selective Reduction Laser Sintering: A New Strategy for NO2 Gas Detection Based on In2O3 Nanoparticles

open access: yesAdvanced Functional Materials, EarlyView.
This research utilizes selective reduction laser sintering (SRLS) to engineer In2O3 NPs for flexible NO2 sensors. The introduction of oxygen vacancy defects enhances sensor performance, offering excellent responsiveness, rapid response/recovery, superior selectivity, low detection limit, and long‐term stability.
Shaogang Wang   +8 more
wiley   +1 more source

Ionic Liquid‐Based Reversible Metal Electrodeposition for Adaptive Radiative Thermoregulation Under Extreme Environments

open access: yesAdvanced Functional Materials, EarlyView.
A wideband tunable electrochromic device with dynamic thermal emissivity control is demonstrated. The system enables adaptive heat regulation via electrochemically modulated silver deposition, achieving efficient cooling and heating states. The flexible design ensures mechanical robustness under bending conditions, making it promising for portable and ...
Jiawei Liang   +10 more
wiley   +1 more source

Mesenchymal Stem Cells‐Derived Extracellular Vesicles Mimetics as Osteoinductive Mediators for Bone Healing

open access: yesAdvanced Functional Materials, EarlyView.
Mesenchymal stem cell‐derived nanoghosts (MSC‐NGs) mimic naturally secreted extracellular vesicles (MSC‐EVs) in structure and physicochemical properties but can be synthesized at more translatable yields. As osteogenic agents, MSC‐NGs demonstrate superior outcomes compared to MSC‐EVs.
Antoine Karoichan   +4 more
wiley   +1 more source

Versatile Selective Soldering via Molten Metal Printing for Heat‐Sensitive 3D Electronics and Smart Wearables

open access: yesAdvanced Functional Materials, EarlyView.
Selective soldering via molten metal printing enables component integration, even in heat‐sensitive applications across fields like additive manufacturing, sustainable electronics, and smart textiles. This method overcomes the temperature limitations of existing technologies.
Dániel Straubinger   +4 more
wiley   +1 more source

Home - About - Disclaimer - Privacy