Results 111 to 120 of about 382,121 (363)

Laser‐Induced Graphene from Waste Almond Shells

open access: yesAdvanced Functional Materials, EarlyView.
Almond shells, an abundant agricultural by‐product, are repurposed to create a fully bioderived almond shell/chitosan composite (ASC) degradable in soil. ASC is converted into laser‐induced graphene (LIG) by laser scribing and proposed as a substrate for transient electronics.
Yulia Steksova   +9 more
wiley   +1 more source

Fiber loop quantum buffer for photonic qubits

open access: yesNew Journal of Physics
We report a fiber loop quantum buffer based on a low-loss 2 × 2 switch and a unit delay made of a fiber delay line. We characterize the device by using a two-photon polarization entangled state in which one photon of the entangled photon pair is stored ...
Kim Fook Lee   +3 more
doaj   +1 more source

Study on optimization of nano-coatings for ultra-sensitive biosensors based on long-period fiber grating

open access: yesSensing and Bio-Sensing Research, 2020
Bio-chemical sensors are expected to offer high sensitivity and specificity towards the detection of an analyte. It has been found that optical sensors based on long period fiber gratings (LPFGs) meet most of these requirements, particularly when coated ...
Sankhyabrata Bandyopadhyay   +12 more
doaj  

BES3 time of flight monitoring system

open access: yes, 2008
A Time of Flight monitoring system has been developed for BES3. The light source is a 442-443 nm laser diode, which is stable and provides a pulse width as narrow as 50 ps and a peak power as large as 2.6 W.
C.P. Shen   +18 more
core   +1 more source

Biomaterial Strategies for Targeted Intracellular Delivery to Phagocytes

open access: yesAdvanced Functional Materials, EarlyView.
Phagocytes are essential to a functional immune system, and their behavior defines disease outcomes. Engineered particles offer a strategic opportunity to target phagocytes, harnessing inflammatory modulation in disease. By tuning features like size, shape, and surface, these systems can modulate immune responses and improve targeted treatment for a ...
Kaitlyn E. Woodworth   +2 more
wiley   +1 more source

Bio‐Responsive Hydrogel for Targeted on‐Demand Release of a Phage Cocktail for Treatment of Pseudomonas aeruginosa Infection

open access: yesAdvanced Functional Materials, EarlyView.
This study presents an injectable hydrogel that responds to Pseudomonas aeruginosa infection by releasing a dual‐phage cocktail on demand. The system degrades selectively in infected wounds, enhances phage localization and stability, and shows potent antibiofilm activity and biocompatibility in an ex vivo human skin model—offering a promising strategy ...
Siyuan Tao   +9 more
wiley   +1 more source

An Efficient Distributed Reinforcement Learning Architecture for Long-Haul Communication Between Actors and Learner

open access: yesIEEE Access
A computing cluster that interconnects multiple compute nodes is used to accelerate distributed reinforcement learning that uses DQN (Deep Q-Network).
Shin Morishima, Hiroki Matsutani
doaj   +1 more source

Mechanism of action of VP1-001 in cryAB(R120G)-associated and age-related cataracts [PDF]

open access: yes, 2019
PurposeWe previously identified an oxysterol, VP1-001 (also known as compound 29), that partially restores the transparency of lenses with cataracts. To understand the mechanism of VP1-001, we tested the ability of its enantiomer, ent-VP1-001, to bind ...
Andley, Usha P.   +10 more
core   +2 more sources

Recycling of Thermoplastics with Machine Learning: A Review

open access: yesAdvanced Functional Materials, EarlyView.
This review shows how machine learning is revolutionizing mechanical, chemical, and biological pathways, overcoming traditional challenges and optimizing sorting, efficiency, and quality. It provides a detailed analysis of effective feature engineering strategies and establishes a forward‐looking research agenda for a truly circular thermoplastic ...
Rodrigo Q. Albuquerque   +5 more
wiley   +1 more source

Home - About - Disclaimer - Privacy