Results 191 to 200 of about 199,035 (400)

Robust Bio‐Textiles Via Mycelium‐Cellulose Interface Engineering

open access: yesAdvanced Functional Materials, EarlyView.
This work introduces a new class of sustainable textiles by growing mycelium, the root‐like structure of fungi, into cellulose‐based fabrics. This semi‐interpenetrating mycelium‐cellulose fiber network combines the strength and breathability of natural fibers with the water‐resistant and adhesive properties of mycelium, resulting in a robust, scalable,
Wenhui Xu   +7 more
wiley   +1 more source

Precursor Mineral Phases of Forming Mollusk Shell Nacre: A Study of Hydrated Samples

open access: yesAdvanced Functional Materials, EarlyView.
Mineral, organic phase, and water are the essential components in mollusk shell nacre formation. Their interplay is not well understood, because the hydrated material is difficult to observe at high resolution, under close to native conditions. Forming nacre is studied using environmental and cryo‐electron microscopy and hydrated ACC phases, together ...
Anna Kozell   +4 more
wiley   +1 more source

Solvent‐Free Bonding Mechanisms and Microstructure Engineering in Dry Electrode Technology for Lithium‐Ion Batteries

open access: yesAdvanced Functional Materials, EarlyView.
Dry electrode technology revolutionizes battery manufacturing by eliminating toxic solvents and energy‐intensive drying. This work details two promising techniques: dry spray deposition and polymer fibrillation. How their unique solvent‐free bonding mechanisms create uniform microstructures for thicker, denser electrodes, boosting energy density and ...
Yuhao Liang   +7 more
wiley   +1 more source

Right Bundle Branch Block and Coved-Type ST-SegmentElevation Mimicked by Acute Cholecystitis

open access: diamond, 2003
Masato Furuhashi   +6 more
openalex   +2 more sources

Microplastics from Wearable Bioelectronic Devices: Sources, Risks, and Sustainable Solutions

open access: yesAdvanced Functional Materials, EarlyView.
Bioelectronic devices (e.g., e‐skins) heavily rely on polymers that at the end of their life cycle will generate microplastics. For research, a holistic approach to viewing the full impact of such devices cannot be overlooked. The potential for devices as sources for microplastics is raised, with mitigation strategies surrounding polysaccharide and ...
Conor S. Boland
wiley   +1 more source

Home - About - Disclaimer - Privacy