Results 261 to 270 of about 2,301,131 (278)

pH‐Tunable Material Properties of Glycine‐Rich Condensates from Tick Bioadhesive

open access: yesAdvanced Functional Materials, EarlyView.
This work studies the influence of pH on the phase separation behavior of a disordered glycine‐rich protein found in tick bioadhesive. The results show profound impact on the propensity of coacervation, condensate microstructure and viscosity, amphiphilicity of the peptides, and effective encapsulation of therapeutic molecules.
Manali Nandy   +5 more
wiley   +1 more source

Quantifying Spatio‐Operational Heterogeneity in Electrochemical Devices via Operando Correlative Neutron and X‐Ray Tomography

open access: yesAdvanced Functional Materials, EarlyView.
Heterogeniety in electrochemical systems heavily influences device performance and durability. The study shows unique evidence of spatio‐operational heterogeneity in fuel cells via operando neutron and X‐ray tomography. Large variations in membrane thickness and hydration depend upon location and operating conditions, with implications on membrane ...
Pranay Shrestha   +9 more
wiley   +1 more source

Expanding Chemical Space of Nucleic Acid Nanoparticles for Tunable Antiviral‐Like Immunomodulatory Responses and Potent Adjuvant Activity

open access: yesAdvanced Functional Materials, EarlyView.
We introduce a nucleic acid nanoparticle (NANP) platform designed to be rrecognized by the human innate immune system in a regulated manner. By changing chemical composition while maintaining constant architectural parameters, we identify key determinants of immunorecognition enabling the rational design of NANPs with tunable immune activation profiles
Martin Panigaj   +21 more
wiley   +1 more source

Towards a 384-channel magnetoencephalography system based on optically pumped magnetometers. [PDF]

open access: yesImaging Neurosci (Camb)
Schofield H   +15 more
europepmc   +1 more source

High‐Spatiotemporal‐Resolution Transparent Thermoelectric Temperature Sensor Arrays Reveal Temperature‐Dependent Windows for Reversible Photothermal Neuromodulation

open access: yesAdvanced Functional Materials, EarlyView.
Thermoelectric temperature sensors are developed that directly measure heat changes during optical‐based neural stimulation with millisecond precision. The sensors reveal the temperature windows for safe reversible neural modulation: 1.4–4.5 °C enables reversible neural inhibition, while temperatures above 6.1 °C cause permanent thermal damage.
Junhee Lee   +9 more
wiley   +1 more source

Asymptotic Calibration [PDF]

open access: yes
D. Foster, R. Vohra
core  

Home - About - Disclaimer - Privacy