Results 171 to 180 of about 154,014 (326)
This study explores aerosol jet‐printed (AJP) surface roughness, its effects on the performance of microwave electronics, and its process contributors. First, an electromagnetic model is vetted for AJP's unique roughness signature. Simulations are built which show process‐induced roughness is as significant as conductor resistivity in driving microwave
Christopher Areias, Alkim Akyurtlu
wiley +1 more source
Influence of Habituation and Alertness on the Simple Cold Caloric Test
Tsukasa Takaishi+2 more
openalex +2 more sources
Laser powder‐bed fusion (L‐PBF) can produce dense WE43 magnesium alloy parts, but their mechanical properties are limited by a nonhomogeneous microstructure. This study investigates the effects of varying direct aging (T5) and artificial age‐hardening (T6) conditions on microstructure and strength. Optimized T6 treatment significantly improves strength
Prathviraj Upadhyaya+5 more
wiley +1 more source
Relationship between Caloric Test and Inner Ear Diseases.
Motohisa Ikeda+2 more
openalex +2 more sources
Direct Consolidation of Copper–Graphene Composite by Rotary Swaging
The applicability of the rotary swaging method for preparation of electroconductive copper–graphene composite by direct consolidation of powders is proven. The consolidated material features advantageous microstructure featuring fine grains and twins, with homogeneous distribution of graphene, primarily along the twin boundaries, which contribute to ...
Radim Kocich+2 more
wiley +1 more source
Directional Preponderance (DP) of Caloric Test in Patients with Various Inner Ear Lesions.
Motohisa Ikeda+2 more
openalex +2 more sources
This study presents rapid evaluation methods for scan strategies in powder bed fusion (PBF) of polymers with a NIR laser as an example for its application. It uses line buffer‐based calculations and point density fields to predict the performance of four different scan strategies. The methods show promising results in laser‐based PBF of polymer samples,
Simon Leupold+9 more
wiley +1 more source
What happens when 32 labs join forces to study nanoparticle‐modified powders? A data‐driven journey through laser powder bed fusion—now openly accessible for the entire additive manufacturing community—is studied. Laser powder bed fusion is a cornerstone technology for additive manufacturing (AM) of metals and polymers, yet challenges in achieving ...
Ihsan Murat Kuşoğlu+73 more
wiley +1 more source