Results 191 to 200 of about 185,695 (283)

Alkyltriphenylphosphonium Binding to Cardiolipin Triggers Oncosis in Cancer Cells

open access: yesAdvanced Science, EarlyView.
Alkyltriphenylphosphonium, exemplified by TPP+‐C14, preferentially accumulates in mitochondria and selectively binds to cardiolipin, a key phospholipid of the inner mitochondrial membrane, causing loss of mitochondrial membrane potential, severe cellular ATP depletion, and calcium imbalance.
Jin Li   +8 more
wiley   +1 more source

Epithelium‐Inspired, Ultrahigh‐Toughness, Ultralow‐Hysteresis, and Highly Compressible Polymer Hydrogels as Self‐Powered, Visual, and Underwater Strain Sensors

open access: yesAdvanced Science, EarlyView.
Inspired by epithelial tissue, epithelium‐like structure hydrogels are synthesized. The as‐prepared hydrogels exhibit ultrahigh toughness, ultralow hysteresis, and ultrahigh compressibility, which can be utilized as self‐powered and visual strain sensors.
Yutang Zhou   +4 more
wiley   +1 more source

Beyond Catalytic Therapy: Copper‐Paeonol Nanozymes Disrupt Fascin‐Mediated Actin Bundling to Suppress Tumor Growth and Metastasis

open access: yesAdvanced Science, EarlyView.
Copper‐paeonol nanozymes target tumor‐specific reactive oxygen species generation and disrupt fascin‐mediated actin bundling, effectively suppressing tumor growth and metastatic colonization. Abstract Fascin, an actin‐bundling protein universally upregulated in metastatic tumors, drives tumor migration and invasion by promoting filopodia and ...
Peiying Zhang   +8 more
wiley   +1 more source

4D Printing of Magnetically Responsive Shape Memory Polymers: Toward Sustainable Solutions in Soft Robotics, Wearables, and Biomedical Devices

open access: yesAdvanced Science, EarlyView.
Merging 4D printing with magneto‐responsive shape memory polymers opens new avenues for intelligent, reconfigurable systems. This review navigates cutting‐edge fabrication techniques, magnetic fillers, and smart polymer matrices, unveiling their potential in soft robotics, biomedical devices, and wearable tech.
Kiandokht Mirasadi   +7 more
wiley   +1 more source

Unleashing the Potential of Raman Spectroscopy to Estimate PEDOT:PSS Doping Level and Crystalline Morphology

open access: yesAdvanced Science, EarlyView.
Herein, the correlational changes of each PEDOT Raman peak to morphology and doping level are identified. Two equations are derived to estimate PEDOT π–π spacing and doping level from Raman spectra (from which mobility is also extracted). GIWAXS and XPS results validate the estimation equations.
Tzu‐Yi Thomas Yu   +7 more
wiley   +1 more source

Home - About - Disclaimer - Privacy