Results 161 to 170 of about 91,993 (326)

Homebrew Camera Traps [PDF]

open access: yesBulletin of the Ecological Society of America, 2004
openaire   +1 more source

Opportunities for Multiscale Pattern Modulation with Temporally Arrested Breath Figures

open access: yesAdvanced Materials Interfaces, EarlyView.
This works presents the temporally arrested breath figure methodology and its opportunities for pattern modulation. Through thermodynamic and photochemical phase change handles, this method uses drop‐wise condensation as a dynamic template for fast, accessible and scalable micropatterning.
Francis J. Dent   +5 more
wiley   +1 more source

Photocatalytic Water Splitting on the Lunar Surface: Prospects for In Situ Resource Utilization

open access: yesAdvanced Materials Interfaces, EarlyView.
Water has been found in craters on the moon nearby locations which are illuminated >80% of the time. Photocatalysis uses energy from sunlight to drive chemical reactions such as water splitting to produce oxygen and hydrogen. It is a scalable technology that requires lighter equipment and utilizes resources available on the moon. ABSTRACT The discovery
Ranjani Kalyan   +6 more
wiley   +1 more source

Light‐Controlled Exposure of Cancer Cells to Reactive Oxygen Species Using Organic Semiconductor Thin Films

open access: yesAdvanced Materials Interfaces, EarlyView.
Spin‐coated films of the conjugated polymer F8T2 (poly (9,9‐dioctylfluorene‐alt‐bithiophene)) generate superoxide at the film‐medium interface, enabling precise delivery of reactive oxygen species (ROS) as visible‐light “ROS patches.” Coated surfaces drive rapid, localised cytotoxicity in MCF7 cancer monolayers under white light, providing a reagent ...
Joe Kaye   +8 more
wiley   +1 more source

Laser‐Synthesized Amorphous PdSe2‐x Nanoparticles: A Defect‐Rich Platform for High‐Efficiency SERS, Photocatalysis, and Photothermal Conversion

open access: yesAdvanced Materials Interfaces, EarlyView.
Using femtosecond ablation, we show that an ordered, stoichiometric crystalline PdSe2 target can be controllably converted into a stable, disordered, non‐stoichiometric, and highly functional amorphous nanomaterial, PdSe2−x${\rm PdSe}_{2-x}$. The obtained nanoparticles offer significant advantages over conventional planar plasmon‐free substrates due to
Andrei Ushkov   +18 more
wiley   +1 more source

Home - About - Disclaimer - Privacy